EARLY UNMANNED TESTING

AS-201 was the first in a series of test flights to ‘man rate’ the Saturn IB and the Apollo spacecraft.8 It lifted off from Pad 34 at 16:12:01 GMT on 26 February 1966. After the booster cut off, the S-IVB stage separated cleanly and attained the planned suborbital arc. In releasing CSM-009, the stage splayed its four panels to an angle of 45 degrees to allow the service propulsion system engine an unobstructed exit. The spacecraft had neither a guidance and navigation system nor an S-Band transmission system. It was powered by batteries instead of fuel cells, had a 20 per cent propellant load, and an ad hoc electromechanical control sequencer. It began by firing its RCS thrusters for 18 seconds to withdraw from the S-IVB. Upon peaking at an altitude of 226 nautical miles, the spacecraft fired its thrusters again to provide ullage to settle the propellants in their tanks, then fired the service propulsion system. However, 80 seconds into the planned 184-second burn the thrust chamber pressure started to decline owing to inadvertent helium ingestion, and by the time the engine shut down the pressure had declined to 70 per cent. The thrusters were immediately fired for ullage and the engine was reignited for a 10-second burn, during which the chamber pressure oscillated from 70 per cent down to 12 per cent.

At this point, CSM-002 was the only production-line spacecraft to have flown – it was launched on 20 January 1966 at the White Sands Missile Range by a Little Joe II booster as a high-altitude abort test.

Although the manoeuvres on the descending side of the arc were designed to drive the spacecraft into the atmosphere at a speed significantly faster than a normal orbital entry, it was still not as fast as a trajectory returning from the Moon. Several seconds later, the thrusters began a pitch manoeuvre at a rate of 5 degrees per second for 18 seconds to yield a 90-degree change in attitude. On separating, the command module used its own thrusters to continue this pitch rotation for an additional 82.5 degrees and then rolled 180 degrees in order to orient its heat shield for atmospheric entry. The plan was to subject the heat shield to a high heating rate – meaning a high temperature for a comparatively short time – but the velocity at entry was 782 ft/sec slower than the planned 29,000 ft/sec and the flight path was 0.44 degree shallower, with the result that the heating rate was less than that intended. Although the deceleration peaked at 14.3 g rather than 16.0 g, it was still much greater than on an operational mission. A fault in the electrical power system ruled out aerodynamic steering, and the ‘rolling’ entry which resulted was 40 nautical miles short. Some 37 minutes after launch, the command module splashed into the South Atlantic. It was recovered 2.5 hours later by USS Boxer. To allow the time to diagnose and rectify the fault in the service propulsion system, AS-202 was rescheduled to follow AS-203, which, as an S-IVB development flight, would not carry a spacecraft.

The docking by Gemini 8 with its Agena target vehicle on 16 March lent support to the decision to try the AS-207/208 dual mission. On 21 March NASA announced that Gus Grissom was to command the first Apollo mission. He would fly CSM-012 with Ed White and Roger Chaffee. They were to be backed up by James McDivitt, David Scott and Rusty Schweickart respectively. In each case, the commander and senior pilot were Gemini veterans and the third man was a rookie. Deke Slayton earmarked Grissom for this role immediately after the Gemini 3 test flight in March 1965. After commanding Gemini 4 in June 1965, McDivitt was reassigned to back up Grissom. White, who flew with McDivitt on Gemini 4, backed up Gemini 7 in December 1965 and then joined Grissom’s crew. Although Slayton was introducing a ‘rotation’ for Gemini in which a pilot could progress through backup to command a later mission, after flying Gemini 8 Scott was immediately assigned to McDivitt’s crew to enable them to obtain early experience of Apollo training prior to attempting the AS-207/208 dual mission. If CSM-011 demonstrated that the problems suffered by CSM-009 had been fixed, then AS-204 would launch CSM-012 in the last quarter of 1966 on an ‘open ended’ mission of up to 14 days ‘‘to demonstrate spacecraft and crew operations and evaluate spacecraft hardware performance in Earth orbit’’, but if there were significant issues outstanding then CSM-012 would be modified for a third unmanned test.

On 4 April 1966 the Manned Spacecraft Center revised its senior management job titles, replacing ‘assistant director for’ with ‘director of’ in order to make explicit the fact that the post had primary rather than subordinate responsibility for that activity. Thus, for example, Kraft ceased to be the Assistant Director for Flight Operations and became the Director of Flight Operations. On 12 May NASA deleted the word ‘Excursion’ from ‘LEM’, to make the lander the Lunar Module ‘LM’. On 25 May, precisely 5 years after President Kennedy made his speech to Congress calling for a lunar landing, a diesel-powered crawler carried the 500-F engineering model of the

Apollo-Saturn V at a maximum speed of 1 mile per hour from the vast cube of the Vehicle Assembly Building a distance of 3.5 miles on a special causeway to Pad 39 on the Merritt Island Launch Area in order to verify the ground facilities and assist in the development of training procedures. It was an awesome demonstration of the ‘mobile launcher’ concept.

AS-203 lifted off from Pad 37 at 14:53:17 GMT on 5 July 1966 and the S-IVB inserted itself into the desired circular orbit at an altitude of 100 nautical miles. As it did not have a spacecraft, an aerodynamic nose cone was used. At orbit insertion the liquid hydrogen was ‘settled’ by a combination of tank baffles and deflectors and by ullage induced by venting liquid oxygen. A TV camera in the fuel tank then verified that continuous venting of liquid hydrogen could hold the fluid in this condition during a coasting phase that approximated a flight heading for translunar injection. The fact that the rise in the liquid hydrogen pressure in orbit was greater than predicted gave data on the heat transfer properties of the tank that would be applied in planning Saturn V missions. Radar tracking by ground stations monitored how the parameters of the orbit were changed by the thrusting effect of continuous venting. A simulated restart of the J-2 engine verified the charging of the restart bottles at orbital insertion cutoff, the fuel recirculation chill – down, the fuel antivortex screen, and the liquid oxygen recirculation chill-down. A subcritical cryogenic nitrogen experiment carried in the nose cap successfully maintained pressure control, with a progressive decrease in the fluid quantity indicating that vapour was being uniformly delivered from a two-phase mixture. To save weight, the S-IVB had been designed such that its propellant tanks shared a bulkhead. This sophisticated structure had to cope with the normal difference in pressure between the tanks and also insulate the liquid oxygen at -172°C from the liquid hydrogen at -253°C to preclude the oxygen solidifying. After the ullage trial of the first revolution, the hydrogen valves were closed and the oxygen valves opened to space in order to place an inverse pressure on the common bulkhead and assess its predicted failure point – when this occurred early on the fifth revolution it caused the vehicle to break up.

On 13 July 1966 Deke Slayton and Chris Kraft jointly wrote to Joseph Shea, the Apollo Spacecraft Program Manager: ‘‘A comprehensive examination of the Apollo missions leading to the lunar landing indicates there is a considerable discontinuity between the missions AS-205 and AS-207/208. Both missions AS-204 and AS-205 are essentially long-duration system validation flights. AS-207/208 is the first of a series of very complicated missions. A valid operational requirement [therefore] exists to include an optical equi-period rendezvous on AS-205.’’ If this Block I flight were to include a rendezvous with its spent S-IVB, it would offer an opportunity to evaluate the control dynamics, visibility, and piloting techniques for the rendezvous phase of AS-207/208. By this point, every spacecraft on Grumman’s production line through to LM-4 was late. The focus, of course, was on LM-1, but late shipments by subcontractors were impeding its assembly. Nevertheless, the ‘rate of slippage’ was slowing, and on 6 October Shea reported his expectation that the company would be able to deliver LM-1 early in 1967. By the end of 1966 LM-1 and LM-2 were in test stands, and LM-3 through LM-7 were in various stages of assembly, but by the end

of January 1967 it was clear that LM-1 would not be able to be shipped on schedule in February.

As its designation suggests, AS-202 was intended to be the second Saturn IB test, but it slipped behind AS-203 as a result of delays involving the spacecraft. CSM-011 was a fully functional Block I spacecraft, minus the crew equipment. But it carried a more sophisticated ad hoc sequencer than on AS-201, a 60 per cent propellant load, a variety of flight qualification instrumentation and four film cameras. It lifted off from Pad 34 at 17:15:32 GMT on 25 August 1966. A key objective was to verify the emergency detection system in closed-loop configuration. At cutoff, the S-IVB was at an altitude of 120 nautical miles and climbing on a ballistic arc. Eleven seconds after separating, the spacecraft fired its service propulsion system in order to place itself on a higher trajectory that would result in entry over the Pacific. As a thermal test, the spacecraft then turned to aim its apex towards the Earth and maintained this attitude through the peak altitude of 618 nautical miles above Africa. On descending over the Indian Ocean it realigned its apex to the velocity vector, then fired its main engine for 89.2 seconds to accelerate for atmospheric entry and concluded by firing it briefly twice more in rapid succession as a demonstration of rapid restart.

In contrast to the ‘rolling’ entry made by AS-201, this time the command module controlled its attitude to fly a trajectory that ‘skipped’ off the atmosphere to trace a ballistic arc which led to a second contact and full entry. A similar profile was to be used on returning from the Moon. The double peak in the heating rate was designed to expose the shield to low heat rates with high heat loads – lower temperatures, but applied for longer – than a ‘straight in’ lunar return. Although the temperature at the base of the shield peaked at 1,482°C, the cabin did not exceed 21 °C. After a flight of 93 minutes, the command module splashed into the Pacific and adopted the apex-up flotation attitude. But the flight path angle at entry of-3.53 degrees was steeper than the desired -3.48 degrees and the lift-to-drag ratio of 0.28 ( + 0.02) was less than the predicted 0.33 ( + 0.04), causing it to fall short by 205 nautical miles. It was 8 hours before USS Hornet recovered the capsule. The planners would have to take into account the lower than expected lift-to-drag ratio of the command module. This qualified the heat shield for Earth orbital missions, but additional tests would be required for a lunar return. Both the Saturn IB and the Block I spacecraft were declared ready for the first manned mission.

As 80 per cent of the objectives specified for CSM-002, CSM-009 and CSM-011 had (between them) been met, AS-204 was released for the manned Apollo 1.

Leave a reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>