OUTCOME UNKNOWN

Surveyor 4 was similar to Surveyor 3, with a soil mechanics surface sampler, but it also had a magnet on foot pad no. 2 to investigate whether there were magnetic particles in the surface material. It was to employ the last of the single-burn Centaur stages and fly essentially the same direct ascent trajectory as Surveyor 2 to aim for Sinus Medii. It lifted off from Pad 36A at 11:53:29 GMT on 14 July 1967. Both the Atlas and the Centaur performed satisfactorily, with translunar injection at 12:04:57. The spacecraft deployed its legs and omni-directional antenna booms, and, on being released, cancelled the inherited rates, acquired the Sun and deployed its solar panel. When commanded to acquire Canopus some 6 hours later, it did so without incident. It was decided to postpone the midcourse manoeuvre from the nominal 15 hours into the flight, and make it 24 hours later. The 10.5-second burn at 02:30:04 on 16 July imparted a change in velocity of 33.78 ft/sec to trim the initial divergence of 175 km from the centre of the 60-km-diameter target circle to a mere 8.5 km.

The pre-retro manoeuvre in which the spacecraft departed from its cruise attitude involved starting a roll of + 80.4 degrees at 01:24:44 on 17 July and a yaw of + 92.7 degrees at 01:29:34. This aligned the thrust axis with the velocity vector as that would be at retro ignition. The roll of -25.3 degrees at 01:35:05 was to optimise the illumination for post-landing imaging of crushable block no. 3. A landing on the prime meridian involved making an approach at 31.5 degrees to local vertical, as opposed to 23.6 degrees for Surveyor 3 at 23°W and 6.1 degrees for Surveyor 1 at 43°W. This would require a greater gravity turn in the vernier phase to force the trajectory to vertical. If successful, this mission would ‘open the door’ to sending future landers to targets in the eastern portion of the Apollo zone.

The altitude marking radar was enabled at 02:00:17, and issued its 100-km slant – range mark at 02:01:56.080. The programmed delay to the initiation of the braking manoeuvre was 2.725 seconds. The verniers ignited precisely on time, and the retro – rocket 1.1 seconds later – at which time the vehicle was travelling at 8,606 ft/sec. With everything apparently normal, the downlink fell silent at 02:02:41.018, when 40.9 seconds into the predicted 42.5-second duration of the retro-rocket’s burn. The vehicle was at an altitude of 49,420 feet, travelling at 1,092 ft/sec, and nominally 2 minutes

Outcome unknown 315

Details of the Surveyor spacecraft’s solid-fuel retro-rocket.

20 seconds from landing. The Deep Space Network was unable to re-establish contact with it.

The engineering team that studied the telemetry realised that whatever the fault was, it had cut the downlink within an interval of 0.25 millisecond without showing any indication in the preceding telemetry. The cause of the failure was not apparent. The only noteworthy unusual development was a slight modulation in the thrust of verniers no. 1 and 2, but it was not evident how this could have been relevant. The investigation listed four possible causes, without rating them in order of likelihood: (1) the breakage of a critical power lead in a wiring harness, or the failure of an

electrical connector, or the failure of a solder joint; (2) damage to the spacecraft’s circuitry from the rupture of the casing of the retro-rocket; (3) a transmitter failure; or (4) damage to the spacecraft’s circuitry caused by the rupture of a pressure vessel such as a shock absorber or a helium tank, nitrogen tank or vernier propellant tank. Since there was judged to be a “relatively low probability’’ of any of these failure modes recurring, no hardware changes were ordered.

Interestingly, if Surveyor 4’s problem was simply a transmitter failure, then it is highly likely that the vehicle landed safely.