Landing Impact and Aircraft Crashworthiness/Survivability Research

Among NASA’s earliest research conducted primarily in the interest of aviation safety was its Aircraft Crash Test program. Aircraft crash survivability has been a serious concern almost since the beginning of flight. On September 17, 1908, U. S. Army Lt. Thomas E. Selfridge became powered aviation’s first fatality, after the aircraft in which he was a passenger crashed at Fort Myers, VA. His pilot, Orville Wright, survived the crash.[363] Since then, untold thousands of humans have per­ished in aviation accidents. To address this grim aspect of flight, NASA Langley Research Center began in the early 1970s to investigate ways to increase the human survivability of aircraft crashes. This important series of studies has been instrumental in the development of impor­tant safety improvements in commercial, general aviation, and military aircraft, as well as NASA space vehicles.[364]

These unique experiments involved dropping various types and components of aircraft from a 240-foot-high gantry structure at NASA Langley. This towering structure had been built in the 1960s as the Lunar Landing Research Facility to provide a realistic setting for Apollo astronauts to train for lunar landings. At the end of the Apollo program in 1972, the gantry was converted for use as a full-scale crash test facility. The goal was to learn more about the effects of crash impact on aircraft structures and their occupants, and to evaluate seat and restraint systems. At this time, the gantry was renamed the Impact Dynamics Research Facility (IDRF).[365]

This aircraft test site was the only such testing facility in the coun­try capable of slinging a full-scale aircraft into the ground, similar to the way it would impact during a real crash. To add to the realism, many of the aircraft dropped during these tests carried instrumented anthropo­morphic test dummies to simulate passengers and crew. The gantry was able to support aircraft weighing up to 30,000 pounds and drop them from as high as 200 feet above the ground. Each crash was recorded and evaluated using both external and internal cameras, as well as an array of onboard scientific instrumentation.[366]

Since 1974, NASA has conducted crash tests on a variety of aircraft, including high and low wing, single – and twin-engine general-aviation air­craft and fuselage sections, military rotorcraft, and a variety of other aviation and space components. During the 30-year period after the first full-scale crash test in February 1974, this system was employed to conduct 41 crash/ impact tests on full-sized general-aviation aircraft and 11 full-scale rotor – craft tests. It also provided for 48 Wire Strike Protection System (WSPS) Army helicopter qualification tests, 3 Boeing 707 fuselage section verti­cal drop tests, and at least 60 drop tests of the F-111 crew escape module.[367]

The massive amount of data collected in these tests has been used to determine what types of crashes are survivable. More specifically, this information has been used to establish guidelines for aircraft seat design that are still used by the FAA as its standard for certification. It has also contributed to new technologies, such as energy-absorbing seats, and to improving the impact characteristics of new advanced composite mate­rials, cabin floors, engine support fittings, and other aircraft components and equipment.[368] Indeed, much of today’s aircraft safety technology can trace its roots to NASA’s pioneering landing impact research.