First Generation DOE-NASA Wind Turbine Systems (Mod-0A and Mod-1) (1977-1982)

The Mod-0 testbed wind turbine system was upgraded from 100 kilo­watts to a 200-kilowatt system that became the Mod-0A. Installation of the first Mod-0A system was completed in November 1977, with one additional machine installed each year through 1980 at four locations: Clayton, NM; Culebra, PR; Block Island, RI; and Oahu, HI. This first generation of wind turbines completed its planned experimental oper­ations in 1982 and was removed from service.

The basic components and systems of the Mod-0A consisted of the rotor – and pitch-change mechanism, drive train, nacelle equipment, yaw drive mechanism and brake, tower and foundation, electrical sys­tem and components, and control systems. The rotor consisted of the blades, hub, pitch-change mechanism, and hydraulic system. The drive train included the low-speed shaft, speed increaser, high-speed shaft, belt drive, fluid coupling, and rotor blades. The electrical system and components were the generator, switchgear, transformer, utility con­nection, and slip rings. The control systems were the blade pitch, yaw, generator control, and safety system.11 [1502]

Similar to the Mod-0 testbed, the Mod-0A horizontal-axis machines had a 125-foot-diameter downwind rotor mounted on a 100-foot rigid pinned truss tower. However, this more powerful first genera­tion of turbines had a rated power of 200 kilowatts at a wind speed of 18 miles per hour and made 40 revolutions per minute. The turbine had two aluminum blades that were each 59.9 feet long. The Westinghouse Electric Corporation was selected, by competitive bidding, as the contractor for building the Mod-0A, and Lockheed was selected to design and build the blades. NASA and Westinghouse personnel were involved in the installation, site tests, and checkout of the wind turbine systems.

Подпись: 13The primary goal of the Mod-0A wind turbine was to gain expe­rience and obtain early operation performance data with horizontal – axis wind turbines in power utility environments, including resolving issues relating to power generation quality, and safety, and procedures for system startup, synchronization, and shutdown. This goal included demonstrating automatic operation of the turbine and assessing machine compatibility with utility power systems, as well as determining reliability and maintenance requirements. To accomplish this primary goal, small power utility companies or remote location sites were selected in order to study problems that might result from a significant percentage of power input into a power grid. NASA engineers also wanted to determine the reaction of the public and power utility companies to the operation of the turbines. The Mod-0A systems were online collectively for over 38,000 hours, generating over 3,600 megawatthours of electricity into power utility networks. NASA deter­mined that while some early reliability and rotor-blade life problems needed to be corrected, overall the Mod-0A wind turbine systems accomplished the engineering and research objectives of this phase of the program and made significant contributions to second – and third-generation machines that were to follow the Mod-0A and Mod-1 projects. Interface of the Mod-0A with the power utili­ties demonstrated satisfactory operating results during their ini­tial tests from November 1977 to March 1978. The wind turbine was successfully synchronized to the utility network in an unattended mode. Also, dynamic blade loads during the initial operating period were in good agreement with the calculation using the MOSTAB computer code. Finally, successful testing on the Mod-0 provided the database that led the way for private development of a wide

range of small wind turbines that were placed in use during the late 1980s.[1503]

Подпись: 13Closely related to the Mod-0A turbine was the Mod-1 project, for which planning started in 1976, with installation of the machine taking place in May 1979. In addition to noise level and television interference testing (see below), the primary objective of the Mod-1 program was to demonstrate the feasibility of remote utility wind turbine control. Three technical assessments were planned to evaluate machine performance, interface with the power utility, and examine the effects on the environ­ment. This system was a one-of-a-kind prototype that was much larger than the Mod-0A, with a rated power of 2,000 kilowatts (later reduced to 1,350) and a blade swept diameter of 200 feet. The Mod-1 was the largest wind turbine constructed up to that time. Considerable testing was done on the Mod-1 because the last experience with megawatt-size wind turbines was nearly 40 years earlier with the Smith-Putnam 1.25- megawatt machine, a very different design. Full-span blade pitch was used to control the rotor speed at a constant 35 revolutions per minute (later reduced to 23 rpm). The machine was mounted on a steel tubular truss tower that was 12 feet square at the top and 48 feet square at the bottom. General Electric was the prime contractor for designing, fabri­cating, and installing the Mod-1. The two steel blades were manufactured by the Boeing Engineering and Construction Company. There was also a set of composite rotor blades manufactured by the Kaman Aerospace Corporation that was fully compatible for testing on the Mod-1 system. The wind turbine, which was in Boone, NC, was tested with the Blue Ridge Electrical Membership Corporation from July 1979 to January 1981. The machine, operating in fully automatic synchronized mode, fed into the power network within utility standards.[1504]

One of the testing objectives of this first-generation prototype was to determine noise levels and any potential electromagnetic inter­ference with microwave relay, radio, and television associated with
mountainous terrain. These potential problems were among those identified by an initial study undertaken by NASA Lewis, General Electric, and the Solar Energy Research Institute. An analytical model developed at NASA Lewis of acoustic emissions from the rotor recommended that the rotor speed be reduced from 35 to 23 revolu­tions per minute, and the 2,000-kilowatt generator was replaced with a 1,350-kilowatt, 1,200-rpm generator. This change to the power train made a significant reduction in measured rotor noise. During the noise testing, however, the Mod-1, like the Mod-0A, experienced a failure in the low-speed shaft of the drive train and, because NASA engineers determined that both machines had accomplished their purposes, they were removed from the utility sites. Lessons learned from the engineer­ing studies and testing of the first-generation wind turbine systems indi­cated the need for technological improvements to make the machines more acceptable for large utility applications. These lessons proved valu­able in the design, construction, and operation of the next generation of DOE-NASA wind turbines. Other contributions from the Mod-1 pro­gram included low-cost wind turbine design concepts and metal and composite blade design and fabrication. Also, computer codes were verified for dynamic and loads analysis.

Подпись: 13Although the Mod-1 was a one-of-kind prototype, there was a con­ceptual design that was designated as the Mod-1A. The conceptual design incorporated improvements identified during the Mod-1 project but, because of schedule and budget constraints, were not able to be used in fabrication of the Mod-1 machine. One of the improvements involved ideas to lessen the weight of the wind turbine. Also, one of the proposed configurations made use of a teetered hub and upwind blades with par­tial span control. Although the Mod-1A was not built, many of the ideas were incorporated into the second – and third-generation DOE-NASA wind turbines.