Highly Maneuverable Aircraft Technology

The Highly Maneuverable Aircraft Technology (HiMAT) program pro­vides an interesting perspective on the use of unmanned research air­craft equipped with digital fly-by-wire flight control systems, one that is perhaps most relevant to today’s rapidly expanding fleet of unpiloted aircraft whose use has proliferated throughout the military services over the past decade. HiMAT research at Dryden was conducted jointly by NASA and the Air Force Flight Dynamics Laboratory at NASA Dryden between 1979 and 1983. The project began in 1973, and, in August 1975, Rockwell International was awarded a contract to construct two HiMAT vehicles based on the use of advanced technologies applicable to future highly maneuverable fighter aircraft. Designed to provide a level of maneuverability that would enable a sustained 8 g turn at 0.9 Mach at an altitude of 25,000 feet, the HiMAT vehicles were approxi­mately half the size of an F-16. Wingspan was about 16 feet, and length was 23.5 feet. A GE J85 turbojet that produced 5,000 pounds of static thrust at sea level powered the vehicle that could attain about Mach

1. 4. Launched from the NASA B-52 carrier aircraft, the HiMAT weighed about 4,000 pounds, including 660 pounds of fuel. About 30 percent of the airframe consisted of experimental composite materials, mainly fiberglass and graphite epoxy. Rear-mounted swept wings, a digital flight control system, and controllable forward canards enabled exceptional maneuverability with a turn radius about half of a conventional piloted fighter. For example, at Mach 0.9 at 25,000 feet, the HiMAT could

Подпись: Research on the HiMAT remotely piloted test vehicle was conducted by NASA and the Air Force Flight Dynamics Laboratory between 1979 and 1983. NASA. Подпись: 10

sustain an 8-g turn, while F-16 capability under the same conditions is about 4.5 g.[1211]

Ground-based, digital fly-by-wire control systems, developed at Dryden on programs such as the DFBW F-8, were vital to success of the HiMAT remotely piloted research vehicle approach. NASA Ames Research Center and Dryden worked closely with Rockwell International in design and development of the two HiMAT vehicles and their ground control system, rapidly bringing the test vehicles to flight status. Many tests that would have been required for a more conventional piloted research aircraft were eliminated, an approach largely made possible by extensive use of computational aerodynamic design tools developed at Ames. This resulted in drastic reductions in wind tunnel testing but caused the need to devote several HiMAT flights to obtain stability and control data needed for refinements to the digital flight control system.[1212]

The HiMAT flight-test maneuver autopilot was based on a design developed by Teledyne Ryan Aeronautical, then a well-known man­
ufacturer of target drones and remotely piloted aircraft. Teledyne also developed the backup flight control system.[1213] Refining the vehicle control laws was an extremely challenging task. Dryden engineers and test pilots evaluated the contractor-developed flight control laws in a ground simulation facility and then tested them in flight, making adjust­ments until the flight control system performed properly. The HiMAT flight-test maneuver autopilot provided precise, repeatable control, enabling large quantities of reliable test data to be quickly gathered. It proved to be a broadly applicable technique for use in future flight research programs.[1214]

Подпись: 10Launched from the NASA B-52 at 45,000 feet at Mach 0.68, the HiMAT vehicle was remotely controlled by a NASA research pilot in a ground station at Dryden, using control techniques similar to those in conventional aircraft. The flight control system used a ground-based computer interlinked with the HiMAT vehicle through an uplink and downlink telemetry system. The pilot used proportional stick and rud­der inputs to command the computer in the primary flight control sys­tem. A television camera mounted in the cockpit provided visual cues to the pilot. A two-seat Lockheed TF-104G aircraft was used to chase each HiMAT mission. The F-104G was equipped with remote control capability, and it could take control of the HiMAT vehicle if problems developed at the ground control site. A set of retractable skids was deployed for landing, which was accomplished on the dry lakebed adja­cent to Dryden. Stopping distance was about 4,500 feet. During one of the HiMAT flight tests, a problem was encountered that resulted in a landing with the skids retracted. A timing change had been made in the ground-based HiMAT control system and in the onboard software that used the uplinked landing gear deployment command to extend the skids. Additionally, an onboard failure of one uplink receiver con­tributed to cause the anomaly. The timing change had been thoroughly tested with the onboard flight software. However, subsequent testing determined that the flight software operated differently when an uplink failure was present.[1215]

HiMAT research also brought about advances in digital flight con­trol systems used to monitor and automatically reconfigure aircraft flight control surfaces to compensate for in-flight failures. HiMAT pro­vided valuable information on a number of other advanced design fea­tures. These included integrated computerized flight control systems, aeroelastic tailoring, close-coupled canards and winglets, new compos­ite airframe materials, and a digital integrated propulsion control sys­tem. Most importantly, the complex interactions of this set of then-new technologies to enhance overall vehicle performance were closely eval­uated. The first HiMAT flight occurred July 27, 1979. The research pro­gram ended in January 1983, with the two vehicles completing a total of 26 flights, during which 11 hours of flying time were recorded.[1216] The two HiMAT research vehicles are today on exhibit at the NASA Ames Research Center and the Smithsonian Institution National Air and Space Museum.