STS-65

Int. Designation

1994-039A

Launched

8 July 1994

Launch Site

Pad 39A, Kennedy Space Center, Florida

Landed

23 July 1994

Landing Site

Runway 33, Shuttle Landing Facility, Kennedy Space Center, Florida

Launch Vehicle

OV-102 Columbia/ET-64/SRB BI-066/SSME #1 2019; #2 2030; #3 2017

Duration

14 days 17 hrs 55 min 00 sec

Call sign

Columbia

Objective

Second flight of the International Microgravity Laboratory using a Spacelab Long Module configuration

Flight Crew

CABANA, Robert Donald, 45, USMC, commander, 3rd mission Previous missions: STS-41 (1990); STS-53 (1992)

HALSELL Jr., James Donald, 37, pilot

HIEB, Richard James, 38, civilian, mission specialist 1, payload commander, 3rd mission

Previous missions: STS-39 (1991); STS-49 (1992)

WALZ, Carl Erwin, 38, USAF, mission specialist 2, 2nd mission Previous mission: STS-51 (1993)

CHIAO, Leroy, 33, civilian, mission specialist 3 THOMAS, Donald Alan, 39, civilian, mission specialist 4 MUKAI, Chiaki, 41, civilian, Japanese payload specialist 1

Flight Log

Following a smooth countdown, the mission of STS-65 carrying the IML-2 science payload got off to a perfect start. Once in orbit, the crew divided into the two teams (Red Shift – Cabana, Halsell, Hieb and NASDA PS Mukai; Blue Shift – Walz, Chiao and Thomas), working around the clock to operate not only the IML-2 science programme, but also a range of secondary and mid-deck experiments. This flight carried more than twice the experiments flown on IML-1 two years before and was supported by an international team of 210 scientists representing six space research organisations (ESA, CSA, CNES, DARA, NASDA and NASA).

The life sciences programme consisted of fifty experiments, divided into bio­processing, space biology, human physiology and radiation biology. Part of these investigations required the European Biorack facility, which was making its third trip into space. The Biorack housed 19 experiments, featuring chemicals and biological

STS-65

The first Japanese woman to fly in space, Chiaki Mukai, is shown entering the IML-2 Spacelab module from the connecting tunnel from the mid-deck of Columbia during the 15-day mission

samples that included bacteria, mammalian and human cells, isolated tissues and eggs, sea urchin larvae, fruit flies and plant seedlings. Thirty materials-processing experi­ments were also conducted, using nine facilities. In the Protein Crystallisation Facility (flying for the second time), approximately 5,000 video images were taken of crystals grown during the mission. This mission also advanced the concept of remote tele­science, with researchers on the ground able to monitor their experiments in real time as they were operated aboard the orbiter. At the end of the mission, the Spacelab Mission Operations Control Center at Huntsville in Alabama reported that over 25,000 payload commands had been issued, a new record.

In addition to the IML investigations the mission also flew the Orbital Accel­eration Research Experiment (OARE), the Commercial Protein Crystal Growth (CPCG) and the Military Application of Ship Track (MAST) payloads, as well as the SAREX amateur radio equipment. The Air Force Maui Optical Site (AMOS), which did not require equipment, was also part of the research programme of this flight. On top of all this, there were also more than a dozen Detailed Test Objectives and more than fifteen Detailed Supplementary Objectives assigned to the mission, as well as the ongoing programme of biomedical studies as part of the EDO Medical Project (EDOMP), and the Earth photography and observation programme.

The crew also set up a video to record the experience of riding in the crew cabin during launch and entry for the first time. On 20 July, the crew honoured the 25th anniversary of the Apollo 11 Moon landing, noting that the historic mission also featured a spacecraft called Columbia (the Command and Service Module). The

22 July landing was waived off due to the possibility of rain showers around the Cape but the next day the conditions were good to support a return to Earth. This was the final flight of Columbia prior to its scheduled modification and refurbishment period at Rockwell’s facility in California. OV-102 left the Cape in October 1994 and returned in April 1995 to begin preparations for its next mission on STS-73.

Milestones

171st manned space flight

93rd US manned space flight

63rd Shuttle mission

17th flight of Columbia

4th EDO mission

2nd flight of IML configuration

1st Japanese woman to fly in space (Mukai)

Longest single flight to date by a female (Mukai)

1st use of video-tape to record lift-off and re-entry from inside flight deck

Подпись:

Подпись: STS-64
Подпись: 1994-059A 9 September 1994 Pad 39B, Kennedy Space Center, Florida 20 September 1994 Runway 4, Edwards AFB, California OV-103 Discovery/ET-66/SRB BI-068/SSME #1 2031; #2 2109; #3 2029 10 days 22hrs 49 min 57 sec Discovery LITE laser pulse studies of Earth atmosphere experiment; SPARTAN-201 astronomy free-flyer

Flight Crew

RICHARDS, Richard Noel, 48, USN, commander, 4th mission Previous missions: STS-28 (1989); STS-41 (1990); STS-50 (1992) HAMMOND Jr., Blaine, 42, USAF, pilot, 2nd mission Previous mission: STS-39 (1991)

LINENGER, Jerry Michael, 39, USN, mission specialist 1 HELMS, Susan Jane, 36, USAF, mission specialist 2, 2nd mission Previous mission: STS-54 (1993)

MEADE, Carl Joseph, 43, USAF, mission specialist 3, 3rd mission Previous missions: STS-38 (1990); STS-50 (1992)

LEE, Mark Charles, 42, USAF, mission specialist 4, 3rd mission Previous missions: STS-30 (1989); STS-47 (1992)

Flight Log

Weather conditions delayed the launch of STS-64 by almost two hours into a two – and-a-half-hour window, but otherwise the launch was untroubled. Once on orbit, the Lidar-in-space Technology Experiment (LITE), mounted on a Spacelab pallet in the payload bay, was activated on FD 1 and became operational the next day. It operated for almost a week of activities, resulting in what official reports called a “highly successful technology test.” The Lidar (light detection and radar) method of optical radar used laser pulses instead of radio waves to study the atmosphere of Earth, as part of the NASA Mission to Planet Earth programme. Sixty-five groups of researchers from twenty countries took part in the experiment, which also employed simultaneous airborne and ground-based measurements to verify the data collected by the LITE payload. The experiments operated for 53 hours, of which 43 hours were of high-rate data quality. Atmosphere “sites” located high above northern Europe, Indonesia and the South Pacific area, Russia and Africa were targeted and from

STS-65

Meade tests the new SAFER system 130 nautical miles above the Earth. Hardware supporting the Lidar-in-space Technology Experiment (LITE) is at the lower right. The photo was taken from the RMS shoulder joint camera. The robot arm is also captured in the scene upper right

the data collected, new information on the structure of clouds, storm systems, dust clouds and pollutants in the atmosphere was obtained. Furthermore, the data was used to understand the effects of forest fires and how reflective the surface of the Earth was at different points and changing times of the day, in varying “seasonal” conditions.

On FD 5, the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) was deployed by the RMS. This was the unit’s second mission and was designed to investigate the acceleration and velocity of solar wind, as well as taking measurements of the Sun’s corona. The collected data was stored on board for downloading once back on Earth and the vehicle was retrieved on FD 7.

During FD 8, Lee (EV1) and Meade (EV2) performed the only EVA of the mission, but one which was a milestone in the preparations for expanded EVA operations at ISS. During the EVA, the two astronauts evaluated the Simplified

Aid For EVA Rescue (SAFER). The RMS remained active and on hand in case of problems. The SAFER unit was designed to provide a usable back-up if an astronaut became untethered during EVA. In some circumstances, the Shuttle would be capable of manoeuvring to “scoop up” a stranded astronaut (though this has not yet been necessary), but the ISS is far less manoeuvrable, so an alternative personal safety system would be required. This unit was a scaled-down version of the MMU flown during 1984 and was designed for emergency situations only (but with built-in back up systems). Propulsion came from 24 fixed-position thrusters. The 1.36 kg nitrogen supply, which could be recharged from the orbiter nitrogen system, could provide about a 3m/sec change in velocity until the gas was expelled. The unit also had an attitude control system and a 28-volt battery pack, which could be charged in orbit. During the EVA, both astronauts flew several short translation and rotation sequences, with data recorded in the SAFER unit for analysis after the mission. The unit was an outstanding success, as the astronauts soon learned that it used less nitrogen than predicted. They also evaluated the SAFER attitude hold system by manually tumbling each other. Despite Meade rolling Lee faster than planned, the attitude control system in Lee’s unit worked perfectly to correct his rotation. Both astronauts replenished their SAFERs about seven times during the EVA and the only problems during the excursion were Meade reporting that his feet had gone cold, and that evaluation of the Electronic Cuff Check (ECC) list, which was designed to replace the paper cuff checklists that had been used since Apollo 12, proved disappointing.

Aside from the LITE payload, STS-64 also carried the Shuttle Plume Im­pingement Flight Experiment, a 10 m RMS extension that was designed to collect data on the RCS thrusters, which would help in understanding their effects in close proximity to large space structures such as Mir or ISS. As with all Shuttle flights, a suite of mid-deck experiments was carried on this mission, many of which had flown before. The mission was extended by a day to maximise the collection of data and was increased by a further 24 hours on 19 September due to storms at the Cape. The following day, two attempts at landing at the Cape were also abandoned due to the weather, so the mission was diverted to Edwards for the third landing window of the day.

Milestones

172nd manned space flight

94th US manned space flight

64th Shuttle mission

19th flight of Discovery

30th US and 55th flight with EVA operations

1st flight of LITE

1st untethered US EVA for 10 years 1st tests of SAFER