SOYUZ RESURGENT

For Yuri Gagarin, the first man in space, still in his early thirties, yet seemingly thwarted from ever flying again, the death of Vladimir Komarov cast a long shadow over his career. Shortly after the disaster, Nikolai Kamanin gathered the cosmonauts together and told him in no uncertain terms that his chances of another mission were virtually nil and that the next manned Soyuz would be flown instead by Georgi Timofeyevich Beregovoi, the oldest active pilot in the corps and a harsh critic of Gagarin, a man he considered to be an upstart. Meanwhile, retaining their slots on the ‘passive’ Soyuz, which would involve the ship-to-ship EVA, were Valeri Bykovsky, Yevgeni Khrunov and Alexei Yeliseyev. All four men began intensive training in November 1967.

Correcting Soyuz’ chronic problems was entrusted to engineers at TsKBEM, the Scientific-Research fnstitute for Automated Devices, and the Gromov Flight – Research fnstitute. The TsKBEM was the ‘new name’ for the OKB-1. Their work led to a number of improvements, including changes to the operating schedule of the reserve parachute, and by September 1967 the Utkin commission declared it was satisfied that Soyuz could commence automated missions. fn mid-October, Vasili Mishin announced that test flights would be launched with an ‘active’ vehicle sent aloft for three days, followed, if its health proved acceptable, by a ‘passive’ craft. The two would then automatically rendezvous, using their fgla radars, with docking not mentioned, but considered an option. The active craft, under the cover name of Cosmos 186, was successfully launched from Tyuratam at 12:30 pm Moscow Time on 27 October, entering an orbit of 209 x 235 km. Unlike Komarov’s Soyuz, its solar panels deployed successfully and its fgla worked perfectly, but a malfunction in its solar-stellar attitude-control sensor prevented it from adjusting its orbit. Nevertheless, the second launch was given the go-ahead.

Enthused by Cosmos 186’s success, Mishin was keen to attempt not only a rendezvous, but also a docking, and the vehicle named Cosmos 188 was duly launched to conduct this new mission at 12:12 pm on 30 October. Its launch vehicle’s trajectory was precise: inserting it into a 200 x 276 km orbit and within 24 km of Cosmos 186. The latter then fired its engine 28 times under automatic command from its Igla and at 1:14 pm, barely an hour after the passive vehicle’s launch, the pair had docked. Clear images appeared on Soviet television that evening, giving the outside world its first brief glance at the configuration of the Soyuz spacecraft.

Despite a small, 8.5 cm gap between the two craft, the Cosmos vehicles undocked after three and a half hours to commence their respective re-entries. Here the problems arose. Cosmos 186 suffered a failure of its solar-stellar sensor, which altered its descent trajectory into a purely ballistic fall from orbit; still, it was recovered safely. On the following day, 1 November, Cosmos 188 proved unable to perform a guided re-entry because of an incorrect attitude. It re-entered at an excessively steep angle, to such an extent that its self-contained package of explosives remotely destroyed the descent module, lest it land on foreign soil. (Had the explosives not fired, it was later concluded, Cosmos 188 would have landed about 400 km east of Ulan-Ude, just to the north of the Mongolian border, but still in the Soviet Union…)

Early the following year, Yuri Gagarin and a handful of other cosmonauts defended their ‘candidate of technical sciences’ theses at the Zhukovsky Air Force Academy and the prospects of another flight into space seemed to brighten a little. On 27 March, he and test pilot Vladimir Seregin took off from the Chkalovskaya airfield, near Moscow, in an antiquated MiG-15UTI trainer. Shortly afterwards, Gagarin requested permission to alter his course… and then, at 10:31 am, communications were lost.

‘‘The weather was very bad that day,’’ remembered fellow cosmonaut Alexei Leonov, who was overseeing parachute jumps from a helicopter near Kirzach airfield. ‘‘The cloud cover was low and it was raining hard. My team had performed just one jump when the weather deteriorated even further. The rain turned to sleet and conditions were so bad that I cancelled the session and requested permission to return to base.’’ As he waited to learn if his request had been granted, Leonov heard two loud bangs from the distance, one of them clearly an explosion, the other a sonic boom, with barely a second or so between them. During the return to base, he was puzzled when the control tower kept radioing Gagarin’s callsign. Leonov wondered if they were mistakenly calling him instead, but upon landing he was told that contact had been lost with Gagarin and Seregin. When Leonov described the explosions he had heard, a helicopter was hastily despatched to the last known location of Gagarin.

At length, as late afternoon gave way to a wintry twilight, the helicopter commander reported finding the wreckage of the MiG some 64 km from the airfield. Debris, he said, was scattered in a wooded area and the aircraft’s engine was buried several metres underground. Search and rescue forces, who arrived shortly thereafter, would determine that the MiG-15 had hit the ground at over 700 km/h.

An upper jaw, identified as that of Seregin, was found and Soviet Air Force officials informed Leonid Brezhnev and Alexei Kosygin of the accident. As yet, however, they had no confirmatory evidence that Gagarin had also died. Early the following morning, a piece of cloth hanging from a birch tree offered the first proof: it was from Gagarin’s flight jacket. Clearly, neither he nor Seregin had ejected. The men’s remains – which Doran and Bizony described as “fingers, toes, pieces of ribcage and skull’’ – were both interred in the Kremlin Wall. The cause of the accident was hard to find. Theories included a bird strike, a collision with a hot-air balloon (the remains of which, in fact, were found close to the crash site) and even more outlandish notions that Gagarin was drunk or Seregin was taking pot-shots at wild deer from the MiG. Still others postulated that after angrily throwing a cognac in Leonid Brezhnev’s face in the wake of Komarov’s death, Gagarin had been imprisoned or confined to a mental asylum. . .

In December 1968, the official accident report pointed towards pilot error, but when the classified files were reopened two decades later it became more likely that Gagarin and Seregin did not have accurate altitude data and had flown into an area where a supersonic Sukhoi SU-15 jet was operating. Bizony and Doran noted that Seregin was told the cloud base was 1,000 m, when in fact it was nearer to 450 m. Witnesses would later confirm seeing both Gagarin’s aircraft and the Sukhoi. “According to the flight schedule of that day,’’ wrote Leonov, “the Sukhoi was prohibited from flying lower than 10,000 m. f believe now, and believed at the time, that the accident happened when the jet pilot violated the rules and dipped below the cloud cover for orientation … that he passed within 10 or 20 m of Yuri and Seregin’s plane while breaking the sound barrier. The air turbulence overturned their jet and sent it into a fatal flat spin.’’ fn such a situation, and thinking they were higher than they actually were, neither Seregin nor Gagarin would have had much time to respond or eject.

ft was Leonov who finally identified Gagarin’s physical remains. . . from fragments of flesh removed from the crash site and placed into a metallic bowl. “A few days before,’’ he wrote in his autobiography, “f had accompanied Yuri to the barber to have his hair cut. f had stood behind Yuri talking while the barber worked. When he came to trim the hairs at the base of Yuri’s neck, he noticed a large, dark brown mole.’’ Leonov had joked that the barber should be careful not to cut the mole, little realising that it would prove pivotal shortly thereafter in identifying the last mortal remains of Yuri Alexeyevich Gagarin. “Looking down at the fragments of flesh lying in that metal bowl,’’ Leonov wrote, “f saw that one bore the mole.’’ The first man to conquer space was dead at the age of just 34.

The day before Gagarin and Seregin died, the Soyuz State Commission, headed by Kerim Kerimov, met to discuss future plans. The parachute design for the spacecraft had been extensively overhauled and cleared to fly. At 1:00 pm on 14 April, with several cosmonauts, including Georgi Beregovoi, in attendance, Cosmos 212 was successfully launched into a 210 x 239 km orbit. Next day, at 12:34 pm, it was followed by Cosmos 213, which entered orbit just four kilometres from its target. Within an hour, and with Cosmos 212 leading the rendezvous, the two craft docked automatically, separated later that evening and each completed five-day independent missions. Cosmos 212 performed the first-ever guided Soyuz re-entry on 19 April, touching down in high winds near Karaganda in Kazakhstan. fts twin, after performing automated tasks in radiation sensing, micrometeoroid detection and photometry, landed near Tselinograd on 20 April.

By this time, many were looking to Beregovoi to fly the next manned Soyuz mission, planned as a four-day flight, with Boris Volynov, Yevgeni Khrunov and Alexei Yeliseyev aboard the second, ‘passive’ mission. They would fulfil the denied missions of Soyuz 1 and 2. But not yet. Trials of the spacecraft’s backup parachute were not considered good enough to assign a human pilot and it was deemed likely that, with a crew of three cosmonauts aboard, it might rip during deployment. Vasili Mishin and the parachute’s designer proposed reducing the three-man crew to two. Further, it seemed prudent, to avoid unnecessary risk, to dock the two Soyuz vehicles, but not yet to attempt a risky EVA transfer.

Mstislav Keldysh, head of the Soviet Academy of Sciences, was even more cautious, refusing to endorse a manned flight until further automated tests had been conducted. On 29 May 1968, Mishin suggested a compromise: a docking of two Soyuz vehicles in orbit, one of them unmanned, the other carrying a single cosmonaut. After the success of that flight, the next crews would be committed to the EVA transfer, perhaps as early as September. Dmitri Ustinov stepped in the way of this plan, demanding an additional automated flight, which caused the intended August date for the first mission to slip until October. On 10 June, the Soyuz State Commission convened and Kerim Kerimov approved a plan to launch the automated mission in July, followed by the joint manned mission in September and a full-scale docking and EVA in November or December. Ustinov added to this the proviso that the EVA should transfer not one, but two, cosmonauts between ships. One Soyuz, obviously, would land with a crew of three, necessitating the repair of the backup parachute… and quickly.

Cosmos 238 was duly launched on 28 August, a month late because of problems with its parachutes, and apparently conducted at least one major orbital manoeuvre, before touching down four days later. All hurdles appeared to have been cleared and the joint mission, with an unmanned Soyuz 2 and Beregovoi aboard Soyuz 3, was scheduled for mid-October. This was slightly postponed due to pre-flight malfunctions and problems during testing of the spacecraft, but the State Commission met on 23 October and confirmed Beregovoi as the Soyuz 3 pilot. The new backups would be Vladimir Shatalov and Boris Volynov. Born on 15 April 1921 in Fedorovka in the Ukraine, Beregovoi was a fully-fledged colonel in the Soviet Air Force and, thanks to his exploits as a squadron commander in the Second World War, had long since been decorated with the coveted Hero of the Soviet Union medal.

He had joined the Air Force in 1941 and was rapidly assigned to a ground-attack unit, flying the Ilyushin Il-2 and completing 185 combat missions against Nazi Germany. Following the end of hostilities, he became a test pilot and flew more than 60 different types of aircraft, becoming deputy chief of the Air Force’s flight testing department. He was accepted for cosmonaut training in 1962 and, as a fellow war veteran, had been looked upon favourably by Nikolai Kamanin. In their biography of Gagarin, however, Doran and Bizony suggested that after serving in a backup capacity for an unflown Voskhod mission, Beregovoi locked horns with the First

Cosmonaut over flight assignments… and personally insulted the younger man over his limited flying experience and qualifications. According to onlookers, Gagarin threatened to do everything in his power to keep Beregovoi from flying in space. Even in the last days before Soyuz 3, serious concerns were raised over 47-year-old Beregovoi’s suitability to carry out the mission. He had failed his pre-launch examination, receiving a ‘bad’ mark rather than the expected ‘excellent’, but instead of substituting him for Shatalov, he was given a second chance, which he passed with a respectable ‘good’. After the flight, when asked if his advanced age was a factor in the indecision over whether he should fly, Beregovoi responded that his height – 1.8 m – was actually a deciding factor…

At noon on 25 October 1968, the unmanned Soyuz 2 (it only received this name after Beregovoi’s launch aboard Soyuz 3) lifted-off from Tyuratam, entering a perfect orbit of 183 x 224 km. Although the systems aboard the spacecraft appeared to be functioning normally, conservatism and scepticism over the reliability of the fgla system prompted suggestions that the attempt to dock with Beregovoi be dropped in favour of a simplified, two-part rendezvous, firstly to a distance of 30 km and then to 100-200 m. Next morning, at 11:34, Soyuz 3 set off and within minutes Beregovoi was in an orbit of 205 x 225 km, ready to exorcise the ghost of Vladimir Komarov and put Soyuz through its paces.

During his first orbit, ground controllers activated the fgla system, which guided Soyuz 3 towards its passive target and brought it to within 200 m. At this point, as an external television camera relayed pictures to Earth, Beregovoi took manual control to attempt a docking. As he closed in to around 50 m, Soyuz 3 inexplicably banked 180 degrees from the target, despite the cosmonaut’s best efforts to counter it. Suspicion that the fgla had contributed to this failure was denied by the system’s designer, Armen Mnatsakanyan, who claimed that ‘‘the cosmonaut had been confused by the light beacons [on Soyuz 2] and thereby [had manoeuvred in such a way] that a certain angle had been formed between the antennas of the [two] craft’’. This, it was concluded, had caused Soyuz 3 to turn away to one side. Mnatsakanyan’s judgement: pilot error.

Years later, Asif Siddiqi would write that, indeed, upon realising that the two spacecraft were imperfectly aligned, Beregovoi should have gingerly stabilised his craft along a direct axis to the target. However, he used a stronger thruster firing to place Soyuz 3 into a completely incorrect orientation relative to the target. Soyuz 2’s radar sensed this improper deviation and automatically turned its nose away to prevent docking, but Beregovoi tried to complete a fly around and a second approach. When the same thing happened again, it became clear that Soyuz 3’s propellant load was running low, leaving barely enough for re-entry. Further docking attempts were immediately abandoned and the two craft drifted apart.

fn spite of these problems, during his four days in space, Beregovoi demonstrated the basic habitability of Soyuz, even giving his terrestrial audience a televised tour of the descent and orbital modules during no fewer than three transmissions. ft did not have quite the same impact as the Wally, Walt and Donn Show, but proved a close Soviet second. Clad in a woollen training top and a white helmet with microphones, he spoke of the sheer ‘comfort’ of Soyuz and that, although he did not ‘need’ a space

suit for protection, one was carried aboard Soyuz 3 regardless. Beregovoi also participated in Earth observation studies, noting forest fires and thunderstorms close to the equator and conducting astronomical and Earth-resources photography.

Soyuz 2, meanwhile, suffered a failure of its astro-orientation sensor, but successfully re-entered and landed in Kazakhstan at 10:56 am on 28 October. This was soon followed by Beregovoi’s own return, which aroused much anxiety, since it was the first Soviet manned re-entry since Komarov’s death. An initial abortive retrofire was followed by a successful 145-second burn over the Atlantic Ocean early on 30 October. The descent module, thankfully, perfectly executed a guided return, hurtling over Africa and the Caspian Sea and hitting the snow-covered steppe near Karaganda with a firm thud at 10:25 am. The ebullient Beregovoi’s first contact with a living being came when he was met by a bewildered local boy on a donkey.

Notwithstanding the problems with the Soyuz 2 docking attempt, the mission had been an extraordinary success, with all of the spacecraft’s systems – including its Igla rendezvous device – performing as advertised. So too, apparently, did Beregovoi himself: in an oblique jab at the insubordination of Wally Schirra’s Apollo 7 crew, Tass reported that the Soyuz 3 pilot had followed his instructions correctly and without complaint. Still, in his post-flight report to the State Commission the following day, Beregovoi actually had a number of complaints: the jettisoning of the launch vehicle’s payload fairing was “unpleasant”, he told them, and one of his viewports was fogged up, whilst others had dust between the panes. Moreover, the manual control system was “too sensitive’’ during his approach towards Soyuz 2. The completion of the Soyuz shakedown cruise, though, set the stage for a far more ambitious docking and spacewalking extravaganza planned for the Soyuz 4 and 5 missions in January 1969. Before that, however, a lunar launch window was scheduled to open for the Soviets at the beginning of December. Had they given up on their lunar dream, the Americans wondered, or was another space spectacular on the cards?