Sampling

Having unstowed the long-handled scoop from the MESA, Armstrong set out to collect the bulk sample from the general vicinity of the SWC, on ground that had been documented as part of that experiment. The television cable was white, but when it became coated with dust it was difficult to see, and because it retained a memory of having been coiled in its dispenser it refused to sit flat on the ground. On seeing that Armstrong’s feet were becoming entangled with the cable, Aldrin called ‘‘Watch it, Neil! Neil, you’re on the cable.’’ Armstrong tried to manoeuvre clear of the cable, but the visor of his helmet limited his downward view and the thickness of the suit prevented him feeling its presence. Aldrin went to help him. ‘‘You’re clear

now.” As Armstrong would have to make many trips to the MESA to collect the bulk sample one scoop at a time, he used his scoop to lift the cable off the ground, Aldrin took it, dragged it aside, gathered the surplus and tossed it beneath the vehicle.

Leaving Armstrong to collect the sample, Aldrin began his first photographic task, which was to document the imprint that his boot made in the surface. After retrieving the Hasselblad from the MESA he went to a patch of ground that they had not yet disturbed and, using the camera hand-held, took a photograph of this. Then he made an impression with his right boot, stepped back and photographed the result. Moving further forward he put his boot on the surface again, and this time took the picture just as he lifted his foot; in so doing he noted that there was so much black material coating his overshoe that its light-blue colour was no longer visible. Moving on to his next task, he took a panorama from a location south of the tip of Eagle’s shadow, covering 360 degrees in 11 frames, one of which captured Armstrong at the MESA. He then went to the southern side of Eagle and took a number of pictures to enable the Grumman engineers to assess the state of the vehicle, in the process capturing a view through the struts of the front gear of Armstrong once again at the MESA. As the next item on his checklist was to take ‘after’ shots of where the bulk sample was collected, he called, ‘‘How’s the bulk sample coming, Neil?’’

‘‘It’s just being sealed,’’ replied Armstrong. Collecting the sample had proved to be more difficult than in training because, in the weak lunar gravity, the material readily spilled from the scoop as he carried it to the MESA, with the result that he lost part of each load. Whatever remained each time, he poured into the bag that Aldrin had prepared. The object of the exercise was to return sufficient material to satisfy the requirements of the many teams of scientists. Over about 15 minutes he drew 23 scoops. Since he did not wish to rely upon having time later to take fully documented samples, he had made an effort to collect a variety of small rocks for this sample. When he was finished, he placed the bag into the first rock box. The lid of the box was a precise fit, and included a razor edge in order to preserve the contents in vacuum once the box was taken into an atmosphere. As there was no lubricant on the hinge, sealing it took longer than expected, in part owing to the fact that in lunar gravity he did not have the same leverage as in training.

On reflection, Aldrin asked if Armstrong would rather take the ‘after’ pictures himself, because he knew precisely where he had sampled. ‘‘Do you want to get some particular photographs of the bulk sample area, Neil?’’

‘‘Okay,’’ Armstrong replied. When Armstrong joined Aldrin, by now back in Eagle’s shadow, Aldrin passed Armstrong the camera, who put it on his bracket even though he was to take just a few pictures. On impulse, he photographed the plaque on the forward strut, and since it was in deep shadow he shot it using a range of exposures. He then went to document the area from which he had collected the bulk sample. Aldrin followed him. Having finished his documentation, Armstrong took an impromptu picture of Aldrin, then returned the camera to the MESA.[40]

“Buzz,” McCandless called. “Have you removed the Close-up Camera from the MESA yet?”

“Negative,” replied Aldrin.

The Apollo Lunar Surface Close-up Camera (ALSCC) was to provide extreme close-up stereoscopic pictures of lunar ‘soil’. It was often referred to as the ‘Gold camera’ because it had been designed by Thomas Gold, an astronomer at Cornell University. As it was a late addition to the mission, the astronauts had very little time to train with it. The plan called for Aldrin to unstow it from the MESA, but Armstrong said he would do it. Aldrin therefore resumed his photographic task. Retrieving the Hasselblad, he took a panorama from a position northeast of Eagle, again covering 360 degrees in 11 frames, and then concluded his documentation of the vehicle.

‘‘Houston, how does our time line appear to be going?’’ Aldrin enquired.

‘‘It looks like you’re about a half hour slow,’’ McCandless replied.

Armstrong set off with the ALSCC. To take a picture (in fact, a stereo pair) he had to rest it on the ground with the Sun illuminating a window at its base, then pull a trigger to expose and advance the film.11 It proved awkward to operate and, although designed to be self-standing, tended to fall over whenever he released it, which was frustrating because he then had to fetch one of the long-handled tools in order to raise its handle off the ground.

‘‘Neil and Buzz, this is Houston,’’ McCandless called, ‘‘Your consumables are in good shape at this time.’’

Deploying the instruments

On finishing his inspection of Eagle, Aldrin was ready to unstow the Early Apollo Surface Experiments Package (EASEP) from the scientific equipment (SEQ) bay, an activity which Armstrong was to document. ‘‘Neil, if you’ll take the camera, I’ll get to work on the SEQ bay.’’

‘‘Okay,’’ agreed Armstrong, taking the Hasselblad from Aldrin.

The compartment on the left-rear quadrant of the descent stage, opposite to the MESA, had two doors – a small door on the left that Aldrin simply hinged open, and a larger one that was hinged horizontally along its upper edge and was to be opened using a lanyard and pulley mechanism. Although the raised door failed to engage its lock, it remained in place. The base of the bay was at chest height. The Passive Seismic Experiment (PSE) was stowed in the left-hand compartment and the Lunar Ranging Retro Reflector (LRRR) on the right. For each, Aldrin had the option of drawing out a boom and using a pulley to lower the instrument onto the ground, but he chose instead to disconnect the hooks and extract them manually, finding this task to be rather easier than in training. Having extracted the PSE he moved off about 10 feet and put it on the ground, then returned to get the LRRR. Meanwhile, having taken the requisite pictures of Aldrin at work, Armstrong put down the

In all, 17 stereo pairs were taken using the ALSCC.

ALSCC and moved to a point about 60 feet southeast of Eagle to shoot a 360-degree panorama in 11 frames. Aldrin closed and locked the doors of the SEQ bay to prevent the sunlight overheating the descent stage. He then asked Armstrong, “Have you got us a good area picked out?”

Although the terrain was pocked by craters, there was a reasonably level spot southwest of Eagle. “I think right on that rise out there is probably as good as any.”

Holding the PSE in his left hand and the LRRR in his right, Aldrin hoisted the load – which in all weighed just 27 pounds in lunar gravity – and headed for the indicated area. After snapping several pictures of Aldrin carrying the instruments, Armstrong retrieved the ALSCC and followed.

“It’s going to be a little difficult to find a good level spot here,” Aldrin warned. “The top of that next little ridge there,’’ Armstrong prompted. “Wouldn’t that be a pretty good place?’’

Aldrin halted about 40 feet from Eagle, “Should I put the LRRR right about here?’’

“All right.’’

Aldrin deposited the LRRR, and moved out 15 feet further out and put down the PSE.

Meanwhile, Armstrong had paused to study some of the larger rocks, “These boulders look like basalt,’’ he ventured, “and they have probably 2 per cent white minerals in them – white crystals. But those things I reported as vesicles before, I now think they’re small craters; they look like tiny impact craters where shot has hit the surface.’’ He was correct. These light patches were where micrometeoroids had exposed clean crystals; they would later be named ‘zap pits’. Armstrong then aligned the LRRR on an east-west axis, levelled it with respect to local vertical by means of an air bubble in fluid that had to be centred (observing that in the weak lunar gravity the bubble took a surprisingly long time to settle) and then tilted the mirror platform to face Earth. It is a common misconception that Earth, seen from the lunar surface, is always at the zenith. In fact, for an equatorial site 23 degrees east of the lunar meridian, Earth is correspondingly situated west of the zenith and revolves upon its axis. In its deployed state, the LRRR came to knee height. Its face incorporated an array of 100 fused silica ‘corner-cube’ mirrors that were to reflect a pulse of laser light straight back to its source. Although a laser directed by a large terrestrial telescope would start out as a narrow collimated beam, by the time the beam reached the Moon it would have dispersed to illuminate an area 2 miles in diameter, and as the instrument would be able to return only a tiny fraction of this the received ‘signal’ would be exceedingly weak. The first laser probe was made by the Lick Observatory near San Jose in California several hours later, but since the precise location of the landing site was not yet identified the first detection was not made
until several days later.[41] As the reflected signal was difficult to discern when the site was in sunlight, the LRRR research was best undertaken during the lunar night.

The deployment of the PSE was rather more complicated. After orienting the instrument with respect to the Sun by ensuring that the shadow cast by a gnomon on the top of the package fell on a predetermined line, Aldrin set out to level it. The design had originally used a ‘bubble’ indicator (like the LRRR) but this had been replaced by a small ball in a cup. Aldrin shuffled the instrument on the uneven surface, pushing the loose material aside, but to his surprise the ball persisted in running around the periphery of the receptacle; on Earth it would have settled immediately. ‘‘That BB likes the outside. ft won’t go on the inside,’’ mused Aldrin. Joining him, Armstrong speculated that the cup might be convex rather than concave. ‘‘Houston,’’ Aldrin called, conscious that time was passing, ‘‘f don’t think there’s any hope for using this levelling device to come up with an accurate level.’’

‘‘Press on,’’ McCandless replied. ‘‘ff you think it looks level by eye-ball, go ahead.’’

The instrument had a pair of З-segment rectangular solar panels mounted on its sides to face east and west. One of the panels deployed automatically, and Aldrin deployed the other manually. As the mechanism unfolded the panels, their bottom corners came into contact with the ground and acquired a coating of dust. With its radio antenna deployed, pointing at Earth, the instrument rose to waist height. The initial transmission from the instrument was received by a ЗО-foot-diameter dish at Carnarvon in Australia. The seismometer was sufficiently sensitive to detect the astronauts walking about.[42]

At this point McCandless had some good news, ‘‘Neil, we’ve been looking at your consumables and you’re in good shape. With your concurrence, we’d like to extend the duration of the EVA 15 minutes beyond nominal. We’ll still give Buzz a hack at 10 minutes for heading in. Your current elapsed time is 2 plus 12.’’

‘‘Okay,’’ Armstrong replied. ‘‘That sounds fine.’’

‘‘Buzz,’’ McCandless prompted. ‘‘ff you’re still in the vicinity of the PSE, could you get a photograph of the ball?’’

‘‘f’ll do that, Buzz,’’ said Armstrong, who had the Hasselblad and had stepped beyond the EASEP to document the instruments with Eagle in the background for context. ‘‘Oh, shoot!’’ he exclaimed upon inspecting the PSE. ‘‘Would you believe

the ball is right in the middle now?” Lunar gravity had finally drawn the ball into the centre of the cup, which clearly was concave.

“Wonderful,” Aldrin replied. “Take a picture before it moves!”