The abandoned vehicle fell straight down

“The ejection system threw me somewhat east of the crash, but the wind was from the east and at the time my chute opened I was a bit concerned that I might be drifting down into the fire, but the wind was strong and I actually missed the flames by several hundred feet. After I landed, I got up and walked away. The only damage to me was that I bit my tongue.’’

As Armstrong had abandoned a stricken Panther jet over Korea, this was his second ejection. Most astronauts would have sought out colleagues and related an enthusiastic account of the event, but Armstrong returned to his office to catch up on paperwork. At the time, observers speculated that there had been an explosion, but they had been misled by the steam issuing from the thrusters as Armstrong was attempting to recover. LLTV A2, which was not yet in operation, was grounded pending an investigation led by Algranti, which concluded that a design flaw had enabled the helium pressurisation of the peroxide system to decay, rendering the thrusters ineffective.

The first В model LLTV was delivered to Ellington in December 1967, but did not become available until mid-1968. A Flight Readiness Review on 26 November declared LLTV В1 ready for astronaut training. On 8 December 1968, on its tenth flight, the vehicle developed an uncontrollable lateral control oscillation, obliging Algranti to eject at an altitude of 200 feet. Kraft and Robert R. Gilruth, Director of the Manned Spacecraft Center, suggested that the LLTV was too dangerous, but the

astronauts, particularly Armstrong, who had most experience with it, insisted it was essential. On 13 June 1969 LLTV B2 was declared ready for astronaut training. As commander of the mission that was to attempt a lunar landing, Armstrong had first call, and he flew it on 14, 15 and 16 June. Since the vehicle carried propellant only for about 6 minutes of flight and it took several minutes to climb and establish the required profile, a descent test lasted at most 4 minutes and often was concluded with only seconds to spare. Although dangerous, the LLTV was the only effective training for flying the LM in a manual mode.[15]

ISOLATION

On 17 June the Apollo 11 crew had their T-30-day medicals and transferred to the Manned Spacecraft Operations Building, located on the industrial facility 5 miles south of the Vehicle Assembly Building. The third-floor crew quarters, which had a ventilation system designed to maintain a germ-free environment, comprised a living room, dining room, kitchen, briefing room, bathroom, exercise room, equipment room, and a number of small windowless bedrooms. Lewis Hartzell had been hired to cook for the Gemini crews and remained, not for the money, but for the honour of cooking for the astronauts. As a former Marine and a cook on tugboats, Hartzell only did plain cooking, which raised no objections from the astronauts.

A flight readiness review later on 17 June authorised loading the hypergolic propellants into the LM and CSM tanks. This represented a major decision point, because if a mid-July launch should prove impracticable, it would not be safe to retain such corrosive chemicals in the tanks for an additional month – not only would the tanks have to be drained, but certain components would require to be removed and returned to the vendor for refurbishment. Worse, there would be no guarantee that the vehicles could be reassembled in time for the August launch window. The loading operation began on 18 June and, despite delays caused by weather conditions at the Cape, was completed on 23 June.[16]

On 26 June Armstrong, Aldrin and Collins had medical examinations that were not only to confirm their physical state, but also to catalogue the organisms in their systems to provide a ‘baseline’ for spotting any infections that they might contract during the final stages of preparation. After a countdown demonstration test that concluded with a simulated launch at 9.32 am local time on Wednesday, 3 July, they flew to Houston for the Fourth of July weekend. Life magazine published an issue

with the cover ‘Off To The Moon’, with stories about their home lives. NASA would have loved to have scheduled the lunar landing for 4 July, but operational constraints did not permit this.

Gene Kranz’s flight control team took 4 July off, but returned to work the next day for their ‘graduation’ simulations. As Armstrong and Aldrin were unavailable, Pete Conrad and Al Bean took their places as a welcome training opportunity for Apollo 12. The flight controllers successfully overcame six tough scenarios during the morning. The afternoon sessions were to be ‘flown’ by the Apollo 12 backup crew of Dave Scott and Jim Irwin, the rationale being that a less-experienced crew would increase the pressure on the flight controllers. Three minutes into the first run, Koos prompted the LM’s computer to issue an alarm. A caution and warning light illuminated, and the computer flashed the numerical identifier for that particular problem. Computer alarms could result from a hardware fault, a software issue, out- of-tolerance data, or a procedural error either by the crew or the ground. Steve Bales, the guidance officer, was monitoring the LM’s computer to ensure that it received the correct data from Earth and that its guidance, navigation and control tasks were being properly executed. In this case the alarm was a 12-01. Bales had previously seen it during functional tests of the computer on the ground, but never in a simulation, and certainly not in flight. While the LM crew awaited advice, he checked his manual: the 12-01 alarm was ‘executive overflow’, which meant that the computer was overloaded. The computer’s executive was to repeatedly cycle through a list of tasks in a given interval of time, and evidently the time available was no longer sufficient to finish the tasks before it was obliged to begin the next cycle. Bales called Jack Garman, a support room colleague and software expert, and they agreed that the alarm was serious, especially since it was recurrent. With no mission rules to inform his decision-making, Bales called Kranz, told him that there was something amiss with the computer, although he could not say what, and recommended an abort. This call came out of the blue as Kranz had not been party to the discussion between Bales and Garman, but as a flight director must trust the judgement of his controllers – especially on abort calls – he confirmed it. Charlie Duke, serving as CapCom, relayed the abort to the crew, who performed the manoeuvre and made as if to rendezvous with their mother ship (which was not actually in the simulation). At the debriefing, Koos pointed out that the 12-01 had not necessitated an abort; in the absence of a positive indication that the computer was failing they should have continued. Shocked that he had made a bad call, Bales got together with the people from the Massachusetts Institute of Technology who had written the software, in order to investigate the alarm. Later that evening, he called Kranz and conceded there had been no need to abort. The next day, 6 July, Koos triggered a range of computer alarms to enable Bales’ team to record data on the ability of the computer to continue to function. On 11 July Bales added a new mission rule listing the alarms that would require an immediate abort; in all other cases the powered descent was to continue pending a positive indication of a critical failure.

In 1966 Slayton had told George E. Mueller, Director of the Office of Manned Space Flight, that an Apollo crew would require 140 hours of training in the CSM simulator, with a lunar landing crew spending an additional 180 hours in the LM. In

fact, as they completed their training, Collins had spent 400 hours in the CSM; Armstrong had spent 164 hours in the CSM, 383 hours in the LM, and a total of 34 hours in the Lunar Landing Research Facility at Langley and flying the LLTV; and Aldrin had spent 182 hours in the CSM and 411 hours in the LM, but had not used the other facilities. Training for lunar surface activities accounted for no more than 14 per cent of their time.