He also tried to describe a normal day on ISS

“It just depends on who you talk to how normal a day would be. But, the typical days without a Soyuz visit or without [an] EVA on board, or without a Progress arrival, you wake up, you have an hour-and-a-half or so to do your morning cleanup and have some breakfast. Then there’s a half-hour conference, or fifteen – minute conference, with the ground, the daily planning conference. Then you start into the work time. There’s about eight hours booked for work but part of that is also booked for exercise, so we only consider about six-and-a-half hours as work time. And then in the end of the day it’s the same sort of wind down—we have

He also tried to describe a normal day on ISS

Figure 33. Expedition-6: Nikolai Budarin wears his Sokol launch and re-entry suit in the Soyuz re-entry module. Kenneth Bowersox is visible in the lower right corner. The view illustrates the cramped conditions inside Soyuz.

another conference, then a couple of hours to put things away and get ready for bed, relax a little bit. And then an eight-and-a-half-hour sleep period, and the whole day starts again.”

Their first day alone on the station began with some free time to get over the hectic hand-over period of joint activities. Thereafter, they began their daily regime of maintenance, experiments, and personal exercise by reconfiguring the station’s com­puter network and loading it with new software. They also checked the HRF rack in Destiny and the station’s defribillator, as well as performing maintenance tasks around the station. By the end of their third week in space they had completed their first PuFF and Renal Stone Experiment runs. Pettit also completed a monthly check of the GASMAP experiment.

As Christmas approached, the Expedition-6 crew were finishing their first month on the station. They spent the week ending December 20 working on their experi­ments, including the Zeolite Crystal Growth (ZCG) experiment, designed to produce zeolite crystals in space that are larger than those produced on Earth. Bowersox completed a practice run of the Foot/Ground Forces experiment (FOOT), which he had described before launch:

“The way it works is there’s a suit that the subject wears, and it’s got sensors on it that measure the angles of the ankle and the knee and the hip, in addition to electrodes on different muscles on the leg and some on the arm. And that senses the electrical activity in the muscles and all that’s being recorded as you do normal daily tasks. There’s also some sensors that are on the bottom of shoes so that if you’re running on a treadmill or standing on the platform doing resistive exercise, those pads will measure the amount of force on your feet. And we’ll collect seven or eight hours of data in that suit three, four times during the mission, about one month apart.’’

Pettit set up the EXPRESS Rack-3 laptop computer prior to activating and checking out the rack itself. The crew also tested the station’s KURS automatic docking system, working with Russian controllers. On December 19, they completed more than 3 hours of SSRMS operations, including a series of grapples on an MBS fixture, to collect Force Movement Sensor (FMS) data. Their final task on December 20 was to install the High Rate Communications Outage Recorder (HCOR) on Destiny. This recorder would store data for later transmission to Earth when the station was not in contact with an American TDRS satellite. It replaced a medium – rate recorder, thereby offering a greater storage capacity. Just before 01: 00, December 21, the crew manoeuvred ISS so that the starboard side was facing the direction of travel. This was called the YW attitude. The manoeuvre was carried out because some areas of the station had been overheating.

Christmas Day, December 25, marked the beginning of the crew’s second month on ISS. They had a day off, although they had to perform some housekeeping chores and their usual two hours of physical exercise each. NASA Administrator Sean O’Keefe spoke to the crew and each man had a 15-minute private conversation with his family and opened presents that had been delivered to the station by STS-113. Later in the day they returned ISS to its standard attitude, with Destiny at the ram and the P-6 SAWs locked to the Sun once more, this was the so-called XPOP attitude. During the next week, Bowersox completed the FOOT experiment, recording data on changes in microgravity of his leg joints and muscles. Throughout the same week Budarin worked on the Russian plant growth experiment and Pettit continued work­ing inside Destiny. Prior to launch Pettit had described the basic principles behind the microgravity experiments on the station:

“The microgravity science experiments are generally physical science experi­ments: crystal growth, combustion, things like that. And, they are utilizing an environment where there are small sedimentation forces, no buoyancy forces or reduced buoyancy forces, things that will allow you to do containerless proces­sing, where you can have something floating around without touching the walls of a container, or a high vacuum, high pumping rate environment like an experiment done outside of the pressurized modules on an exposure platform… many observations in science are key around the balance of forces, measuring one force in the absence of another. And many of the phenomenon that we see on Earth are governed by the balance of these forces. So if you remove, say, gravitational force, now all of a sudden you can see surface tension force. And so, experiments done on Space Station are designed around the reduction in the gravitational force so that you can see other forces manifest themselves and you can make new observations that are very difficult, if not impossible, to make any other way.”

The crew celebrated New Year 2003 at midnight GMT, December 31. January 2 saw them carry out a fire drill and setting up the ultrasound equipment in the HRF, which would be used to “image” the crew’s body organs for both research and medical use. The following day, they recorded sound levels in the different ISS modules for health and safety at work monitoring, and continued their work with the Zeolite Crystal Growth experiment. Budarin continued to work with experiments in the Russian sector of the station and also checked the wake docking port on Zvezda in preparation for the arrival of Progress M-47, in February.

All three men spent the week preparing Quest for the upcoming Stage EVA and completed their monthly lung function test. Bowersox and Pettit operated the SSRMS on January 9, to complete a video survey of the thermal control equipment associated with the growing ITS. NASA made an announcement the following day that the 50th EVA dedicated to the construction of ISS was delayed until January 15, with Pettit accompanying Bowersox outside in place of Budarin. During a December 5, pre-EVA session on the station’s stationary bicycle, Budarin had registered a rate of oxygen consumption that was too low to meet American protocols for an EVA that used the EMU and the American-controlled Quest airlock. For NASA, Rob Navias announced that the delay had “no mission impact whatsoever… There is no mission impact to anything else that this crew is doing on orbit or to the objectives.” He added, “There was no rush to conduct this spacewalk and we decided to delay it.’’

While America refused to release the reason behind Budarin’s replacement, quoting the medical privacy of the individual concerned, the Russians did release the information, stating that if it had been a Russian EVA using the Russian Orlan suit and the Pirs airlock Budarin’s oxygen consumption rate would not have barred him from making the EVA. Bowersox had discussed the idea behind the EVA:

“[I]t’s proof of concept as much as anything. We’re trying to show that a station crew, with just three people, really can get suited up, go outside, and do simul­taneous EVA arm ops with the Canadian robot arm, and a mixed-nationality EVA. It’s a lot to take on, if you think about it, and there’s only three of us there when we do these things during the docked time frame, with a Shuttle crew there, there’s a whole lot more support, there’s more cameras from the orbiter, there’s an extra airlock, an extra door to go in and out and a lot more people to help you get things done. It’s quite the challenge to do it with just three people, and so what we’re going to be doing mostly is proving that it is possible.’’

Ironically, it was Budarin who had described the EVA during his own pre-launch interview:

“Well, speaking about EVA, I very much hope that we’ll have this EVA. There will be two crewmembers going outside, stepping outside the station; one will stay

behind, supporting their activity in space. Jim Wetherbee’s crew will have installed the P-1 segment on the S-0 Truss; we will pick up with installing equipment on this truss segment. We will install a UHF antenna, we will install a radiator, we will have to deploy it. It is stowed and latched. In order to deploy this radiator we will need to open the latches, open the locks… there are eighteen of them, so there will be a lot of tedious work. I’m doing these locks. We will also have to install some struts with lights on the CETA cart … and we will also be transferring tools from one truss segment to another; we will be using the robotic arm. I’m hoping that I will get a chance to participate in this EVA. I have eight spacewalks under my belt from the Mir experience, and I’m hoping to get EVA experience on the International Space Station. Maybe there will be other objec­tives, but for now, this is the program of our EVA. But, we are ready to do whatever comes our way.’’

On the day, the EVA was delayed by problems opening Quest’s outer hatch, which the Americans said was caused by dirt in the lock, but the Russians quickly blamed on the inexperience of the two astronauts, who were both making their first EVA. With the hatch finally open, the two men switched their EMUs to internal battery power at 07:50. Bowersox reported a loss of digital data in his EMU, but the problem cleared up when he cycled the internal power switch. Having collected their tools they made their way to the P-1 ITS, where they released ten launch restraint straps on the P-1 radiators. A further eight restraints had been previously released during the STS-113 EVAs in November 2002, when the P-1 ITS was installed on ISS. Controllers in Houston then commanded the central radiator to extend to its full 15 metres. The deployment took 9 minutes to complete. The two men then inspected equipment on the P-1 ITS before making their way to the exterior of Unity, where Pettit used sticky tape to remove grit from the CBM docking seals in preparation for the arrival of the MPLM Raffaello on the next Shuttle flight, STS-114, then planned for March.

Moving to the S-1 ITS, the two men failed to remove a stanchion from its stowed location for installation on one of the two handcarts that future EVA astronauts would use to move themselves along the completed ITS. A pin was interfering with the stanchion’s movement and its installation was deferred to a later EVA. Pettit retrieved tools from a storage box on the Z-1 Truss prior to checking the ammonia system on the P-6 ITS. This task was performed in advance of an ammonia cooling system test on a Shuttle flight planned for later in the year. Returning to Quest, the astronauts used a pair of scissors to cut the strap that had delayed the hatch opening at the start of the EVA. The EVA was completed at 14: 41, after 6 hours 51 minutes. All three men had a rest day on January 16, performing only routine exercise and maintenance.