Freedom 7

Duane E. Graveline, M. D., is a former U. S. Air Force flight surgeon, aerospace

medical research scientist, and analyst of Soviet bioastronautics. He was selected as one of six scientist-astronauts by the National Aeronautics and Space Administration (NASA) in 1965. These days, he is a prolific writer on medical issues and science fiction subjects.

In the dark jungles of Cameroon the female chimpanzee hardly appeared to feel the sting of the dart – it appeared no more than the sting of a hornet. But within seconds her vision dimmed, her muscles became strangely unresponsive, and she plummeted to the ground. A native dragged her unconscious body to the center of a large net spread across the jungle floor. Soon her two offspring slowly made their way to her body and the trap was sprung. The two young chimps then began their long trip to Holloman Air Force Base in New Mexico where they joined a group of chimp trainees. The year was 1959. Their training for space was soon to start. One of them, designated No. 65 during the training program, would be called “Ham” after the Holloman Aviation Medical Center upon suc­cessful completion of his space flight.

On 31 January 1961, Ham’s welcoming handshake after his 16 minute 39 second space flight became known to the world. Three months later (but unfortunately three weeks after the Soviets launched Yuri Gagarin), Alan Shepard was to make his historic space flight.

We in America, in seeking some means to erase the shame of being second in manned space flight, would say that Gagarin had no option for manual control, whereas Shepard was allowed some control of his vehicle, thereby giving us some justification for the claim to have been the first to demonstrate normal extremity function during weightlessness. But even here, there is some room for debate. Ham had full use of his extremities in his responses to blinking test lights during the MR-2 mission, demonstrating that use of extremities would be normal during zero gravity. So few doubts remained.

I had selected zero gravity deconditioning as my primary area of research, and I recall with amusement the dire predictions of other scientists who made headlines back then with their warnings of physiological malfunctions that would result from even short-term zero gravity exposure. To me the critical factor was time, and you could go to the literature on bed rest to get the lions’ share of it – muscle weakness, bone demineralization and orthostatic intolerance. I even had a personal introduction to the deconditioning effects at the age of 10 years while sliding out of bed following nine days of bed rest for an appen­dectomy. After reassuring the nurse that I was fine, I would’ve slid to the floor had it not been for her support. Imagine, at age 10 years I had an introduction to the effects of zero gravity, my future research subject. Eighty per cent of astronauts returning from the space station would show a similar response to standing upright on Earth the first time.

But I was not concerned with deconditioning as a result of such short exposures to weightlessness as Ham’s ballistic flight, or even that of Alan Shepard. Zero gravity decon­ditioning as a medical concern would come; but it would come much later.

You need to remember that in the Cold War climate of those days, one could be criti­cized for saying anything good about Soviet accomplishments. One of my senior offi­cers was critical to the point of being caustic about my reports of Soviet progress in bioastronautics. I was assigned the role of intelligence analyst during this period. Calling me anti-American was one of the milder comments I would attract in those days, simply by reporting the truth. Prior to the Gemini 3 mission, by which time we had accrued a total of 34 orbits of manned space flight, the last thing that our team wanted to be told was that the Soviets had already achieved 292 manned orbits, and that their bioinstru­mentation was surprisingly sophisticated. During this entire period we were gleaning what we could from Soviet data. Analyzing that data was my job. I will summarize the mission of Yuri Gagarin next, owing to its obvious implications for what soon followed in the United States.

On 12 April 1961, Yuri Gagarin made the world’s first manned orbital flight. Its total duration from launch to landing was 108 minutes. His bioinstrumentation was the same as that of all the other cosmonauts who followed in the Vostok program: a respiratory moni­tor, two leads of electrocardiograms, blood pressure, precordial vibrocardiogram and gal­vanic skin response (GSR). The orbital plane was inclined at 64 degrees to the equator, and the initial altitudes were selected to guarantee natural orbital decay within the lifetime of the available consumables. The cabin atmosphere was of a composition and pressure equivalent to that at sea level.

The U. S. accessed Soviet biodata in real time, giving our space scientists relevant biodata throughout the mission. Lacking a frame of reference, we had no means of utilizing the precordial vibrocardiogram information or that of the GSR. But we did have electrocardiographic data throughout the flight, and this banished doubts about whether the human body could adjust to the new environment of zero gravity. In the jargon of the space age, Gagarin’s heart rate and rhythm were nominal (expected) all the way. He displayed a normal sinus rhythm throughout (the electrical activity of each heart beat originated from the usual spot near the atrial sinus), with a relative tachycar­dia (faster) in the launch and pre-deorbit phases of the mission. The mission plan was to descend by parachute, so useful biotelemetry terminated at retrofire. We physiolo­gists and doctors needed to hold our breath no longer. Our amazing bodies were able to adapt to zero gravity.

And the flight of Freedom 7 on 5 May proved to be no different in its effect on Alan Shepard. His electrocardiogram was to show normal sinus rhythm all the way with nominal rates. The non-medical reader might wonder about my use of the term “normal sinus rhythm,” and this is because the origin of our heart beat can vary considerably. The usual origin of our pacemaker is the wall of the right atrium. From there the electrical activity spreads across the atria to the nodal tissue at the junction of the atria and the ventricles. The pacemaker of the heart can be normal sinus, atrial, or nodal, or indeed any spot in between. Needless to say, had Gagarin or Shepard’s pacemaker shifted to any spot in the heart other than the sinus, physiologists would have been concerned. It did not, so everyone was happy. On the basis of Gagarin’s data we had no concerns about Shepard’s ability to adapt to zero gravity, and he took his five minutes of weight­lessness in his stride.

Alan Shepard: On 11 November 1923 in the mountains of Derry, New Hampshire was born a man who was to pee in his pants to an audience of spacecraft designers and launch personnel, and later hit golf balls on the Moon. A naval aviator of almost unsurpassed tal­ent and cool daring prior to his selection as a Mercury astronaut, he had more flight hours than anyone else. In a community of the bold and bright, he stood out like a beacon. It seemed to me that on those gravel roads so common to space launch facilities, every bend in the road was a challenge to throw gravel with his Corvette. One time, NASA tracking brought us together at Vandenberg Air Force Base in California. He may have trusted me to read the medical console, but he never trusted me to take the wheel of his prize automo­bile. It was generally a pleasure to be with him except for the telephone calls. It seemed as if the whole world wanted to meet him and shake his hand. Since I was the one who sat with him at the restaurant, I was the one they called. I asked him how to handle them. He said they just want to talk, and I learned what it meant to have been in space – to be an astronaut.

Alan Shepard had the grin of a rascal and when, in 1961, a few months after his flight, I showed him a small photo which just begged to be sketched in charcoal, without hesita­tion he wrote across the bottom of the blank sketch paper, “That’s the cleanest joke I know.” I spent months working on that charcoal sketch.

Sometime in the 1990s, having had that sketch hanging in my home in northern Vermont for a couple of decades with only my guests to see it, I finally decided to drive down to Derry and turn it in. Having spent years absorbing all that was known of Gagarin, I was surprised at the twists and turns involved in trying to find where space memorabilia relat­ing to Alan Shepard might be stored.

Most people on the main street of Derry just looked at me questioningly. Finally, one told me that he knew of some space papers stored in a room over the firehouse. Needless to say, I was astonished. There was no marker, no discernible memories – nothing to tell the world that this was the birthplace of Alan Shepard. Having just completed my ten years with the U. S. Air Force and my special assignment as an analyst of Soviet bioastro­nautics, the cosmonauts and astronauts were like a family to me. There could hardly be a child in the Soviet Union who didn’t worship Yuri Gagarin. His name was everywhere and is still revered. Yet here was his American counterpart in some shelves over the

Freedom 7

Duane (‘Doc’) Graveline with the pre-autographed sketch he drew of his astronaut colleague Alan Shepard. (Photo courtesy of Duane Graveline)

firehouse with no markers visible to the public three decades after his historic flight. The Soviets named their entire space complex after Yuri Gagarin, and to me these New Hampshire folks appeared to have almost forgotten their one-time favorite son. They were waiting to build a suitable structure, I was told. But thirty years? I would like to think that my visit, with my sketch and a few e-mails in hand, played a role in helping them finally to start building a suitable structure.

Now a well-marked sign off Interstate 93 directs traffic to Derry, the home town of Alan Shepard. Regardless of how large is the sign or the museum, they will be insufficient to encompass the memories of the man I remember.

Duane E. Graveline, M. D.,

Merritt Island, Florida, 2013

Leave a reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>