An Explanation

Understood in terms of schools, traditions, and disciplines, the question of accounting for the response to Lanchester’s work takes on a sociological rather than a psychological form. The psychological machinery of individual cogni­tion must underpin all sociological processes, but that does not mean that individualistic answers can be given to sociological questions. The explana­tion that is needed must involve the interaction of scientific subcultures and institutions and thus go beyond the personalities of those involved. As long as we atomize the process into a sequence of individual responses, determined by the idiosyncrasies of personality, we shall miss the significance of what happened to Lanchester. The central point that I have sought to demonstrate is that in Britain his work was actively assessed by members of a confident scientific subculture—a subculture from which Lanchester himself was ex­cluded. Its members were steeped in the achievements and exemplars of the Tripos tradition and the research of those who carried the tradition forward. The tradition and the line of research growing out of it were diffused through authoritative textbooks such as Lamb’s Hydrodynamics. This book and the growing body of work documented in successive editions was a reference point not only for those who had themselves sat the Senate House examina­tions, but also for those in Britain who trained at universities elsewhere.

As a by-product of this collective assimilation, Lanchester’s work was treated selectively. It was reinterpreted and restructured along lines that were familiar to the group responding to it. Such transformations are routine dur­ing processes of cultural assimilation. Social psychologists are familiar with the process and have given it a name. They call it conventionalization.73 In this chapter I have documented the conventionalization of Lanchester’s work to the norms and practices of Cambridge-style mathematical physics. The process of assimilation governed the way Lanchester’s work was understood. For a number of crucial years it was the precondition for the assessment and the rejection of Lanchester’s ideas.

The assimilation and conventionalization had the effect of simplifying the overall structure of Lanchester’s argument, introducing into it an exclusive emphasis on the behavior of ideal fluids that was not present in the original text. In itself this simplification could be represented either as a distortion or as an improvement in the formulation of the theory. It certainly increased the precision with which the central ideas of cyclic flow and lift were spelled out. In this respect there can be no doubt that the “mathematicians” saw more deeply into Lanchester’s work than did the general run of “practical men.” The mathematicians were doing for Lanchester what Maxwell had done pre­viously for Faraday. Qualitative ideas were cast into a mathematical form. This need have had no detrimental effect on the appreciation of Lanchester’s achievement. The mathematical reformulation could have been the starting point for work that carried the theory forward—as in Germany. In Britain it had the opposite effect and justified the rejection of Lanchester’s work.

The reason was that the local, scientific culture into which Lanchester’s work was assimilated had effectively abandoned ideal-fluid theory as a re­search topic and a research tool. The Euler equations of classical hydrody­namics described territory that had already been conquered, exploited, and left behind by the moving front of fundamental research. British mathemati­cal physicists were confident that ideal-fluid theory dealt only with a math­ematical fiction and not with a physical reality. It was material for examina­tion boards, not research committees. Interest had now moved to Stokes’ equations and the real behavior of viscous and turbulent fluids. By contrast, other experts from a different tradition, who were responsive to different imperatives, could respond very differently to the simplified, mathematical version of Lanchester’s cyclic theory. This is why it was the German engi­neers schooled in technische Mechanik who carried this approach forward. They too were professionally interested in viscosity and turbulence, but their background assumptions and engineering orientation encouraged them, and permitted them, to frame and partition the problems of aerodynamics and fluid dynamics in a different way to their British counterparts. The conse­quences of this orientation toward engineering is the subject of the next two chapters. These chapters contain a detailed discussion of the German work on aerodynamics and provide a further opportunity to see the tradition of technical mechanics in action and to explore its institutional context more deeply. They consolidate the picture that is beginning to emerge.