The Cambridge School
At 9.30 a. m., on August 24, 1912, Lamb took the chair of section III of the Fifth International Congress of Mathematicians that was being held in Cambridge.38 Section III was devoted to mechanics, physical mathematics, and astronomy. Lamb wanted to say a few words before getting down to business. He noted that, in spite of the subdivision of the field, the scope of the section was still a wide one. He then went on to offer a classification of the different styles of work that were to be represented. He also identified the predominant style of what he called the “Cambridge school” within this typology. His words are revealing.
It has been said that there are two distinct classes of applied mathematicians; viz. those whose interest lies mainly in the purely mathematical aspect of the problems suggested by experience, and those to whom on the other hand analysis is only a means to an end, the interpretation and coordination of the phenomena of the world. May I suggest that there is at least one other and an intermediate class, of which the Cambridge school has furnished many examples, who find a kind of aesthetic interest in the reciprocal play of theory and experience, who delight to see the results of analysis verified in the flash of ripples over a pool, as well as in the stately evolutions of the planetary bodies, and who find a satisfaction, again, in the continual improvement and refinement of the analytical methods which physical problems have suggested and evoke? All these classes are represented in force here today; and we trust that by mutual intercourse, and by the discussions in this section, this Congress may contribute something to the advancement of that Science of Mechanics, in its widest sense, which we all have at heart. (1:51)
The tone may have been lofty but Lamb had a purpose. He was making a plea for the representatives of the different tendencies in the discipline to communicate and cooperate. The remarks suggest a background anxiety that there might be problems on this score, and Lamb may have known about the convoluted and acrimonious arguments between pure and applied mathematicians that had been taking place in Germany. We must also remember that Lamb was addressing a gathering of men of powerful intellect, many with significant achievements behind them and reputations to make or break. Larmor, Levi-Civita, Darwin, Moulton, and Abraham were all in the audience, while the Gottingen laboratory was represented by the presence of two of Prandtl’s colleagues and former assistants, Theodore von Karman and Ludwig Foppl. All of these men played an active part in the session that followed. Given his unifying purpose, Lamb could not have risked caricaturing the different classes of mathematician.
The care with which Lamb would have chosen his words lends a particular interest to his description of the Cambridge school. Lamb saw the characteristic concern of its practitioners as lying between pure mathematics, on the one hand and, on the other, a purely instrumental view of mathematics, one in which its role was simply the interpretation and coordination of data. The point on which he placed the emphasis was that mathematical results should be verified by the interplay of theory and experience. Lamb obviously saw this process as more than mere success in the ordering of data. Truth and correspondence with reality were the central aims. He described this concern as “aesthetic”—a word chosen, surely, to portray an intellectual involvement that was dignified rather than merely useful. The emphasis on truth was certainly consistent with what Lamb had said elsewhere, for example, in the discussion of Stokes’ equations in his Hydrodynamics. Applied mathematics, as practiced at Cambridge, was to be justified by its capacity to portray the nature of physical reality, not by its employment of useful fictions.
Other Cambridge luminaries expressed themselves somewhat differently but conveyed a similar orientation. At a different session of the same conference the Cambridge mathematical physicist Joseph Larmor voiced sentiments that reinforced Lamb’s message. Larmor asserted that the role of the mathematician and the physicist were essentially identical.39 A. E. H. Love had spoken out in support of Larmor at the conference.40 Love was reiterating a position already developed in his authoritative Treatise on the Mathematical Theory of Elasticity.41 This volume contained a historical introduction in which tendencies and distinctions similar to those identified by Lamb were rehearsed and evaluated. Love declared, as one of his aims, that he wanted to make his book useful to engineers and this had led him “to undertake some rather laborious arithmetical computations” (v). But he also wanted to “emphasise the bearing of the theory on general questions of Natural Philosophy” (v), and it was clear that this was where his heart lay. His historical comments were judicious, but he went out of his way to emphasize the non-utilitarian origins of the subject matter he was about to expound. Thus,
The history of the mathematical theory of Elasticity shows clearly that the development of the theory has not been guided exclusively by considerations of its utility for technical Mechanics. Most of the men by whose researches it has been founded and shaped have been more interested in Natural Philosophy than in material progress, in trying to understand the world than in trying to make it more comfortable. From this attitude of mind it may possibly have resulted that the theory has contributed less to the material advance of mankind than it might otherwise have done. Be this as it may, the intellectual gain which has accrued from the work of these men must be estimated very highly. (30)
Technical mechanics is to be distinguished from natural philosophy, and he, Love, was doing a species of natural philosophy. Any resulting failure to contribute to material progress did not seem to distress him unduly. He was more interested in the link with fundamental physics and in recounting the detailed discussions that had taken place over the number and meaning of the elastic constants. These had thrown light on “the nature of molecules and the mode of their interaction” (30). The wave theory of optics and the theory of the ether had benefited from advances in the theory of elasticity, as had, even, certain branches of pure mathematics. Though Love and Lamb expressed themselves differently, we see a similar distancing of applied mathematics from issues of utility and an affirmation of the fundamental character of the relation between mathematics and physical reality. G. I. Taylor’s demand, made a few years later in his Adams Prize essay, that applied mathematics should have a firm basis in physics was the expression of a stance already endorsed by figures of authority on the Cambridge scene and already characteristic of the Cambridge school.42
The demand for a firm basis in physics had not always characterized what had passed as “mathematical physics” or “mixed mathematics” at Cambridge. Mathematicians of earlier generations had often been happy to see mathematics arise from physical problems but had then developed it independently of experimental data or with only a loose or analogical link to physical reality. An example of this earlier phase, which was still evident as late as the 1870s, was James Challis’ Essay on the Mathematical Principles of Physics in which he offered a speculative, hydrodynamic cosmology.43 The closer connection between mathematics and real physics that Lamb and, later, Taylor were taking for granted had originally been forged in the work of Stokes, Thomson, and Maxwell, who were critical of the earlier style.44 Lamb, however, still felt the need to express himself carefully when he said that the Cambridge school provided “many examples” of the intermediate path between an overly abstract and an overly utilitarian approach. He thus acknowledged a continuing diversity in Cambridge work. This should come as no surprise since traditions, even vigorous traditions, will always encompass a range of positions as they change and develop. Rayleigh, like Lamb, spoke of “the Cambridge school,” and he too noted a certain inner complexity and development. In connection with Routh’s textbook on dynamics, Rayleigh took the view that the earlier editions had been overly abstract, whereas later editions evinced a closer engagement with genuine scientific problems.45 In other words Routh had shifted toward the position that Lamb, like Rayleigh himself, saw as the strong point of the Cambridge school.46