Purpose: To meet an IA-PVO demand for a high-performance automated interception system.
Design Bureau: OKB-51 ofP O Sukhoi, Moscow.
In late 1957 the threat of USAF strategic bombers able to cruise at Mach 2 (B-58) and Mach 3 (B-70) demanded a major upgrade in the PVO defence system. At the start of 1958 a requirement was issued for manned interceptors with a speed of 3,000km/h (l,864mph) at heights up to 27km (88,583ft). Mikoyan and Sukhoi responded. Creation of the T-3A-9 interception system was authorised by the Council of Ministers on 4th June 1958. The air vehicle portion of this system was a derivative of the T-3 designated T-3A, and with the OKB-51 factory designation T-37. Detail design of this aircraft took place in the first half of 1959. In February 1960 the single flight article was approaching completion when without warning the GKAT (State Committee for Aviation Equipment) terminated the programme and ordered that the T-37 should be scrapped. The role was temporarily met by the Tu-128 and in full by the MiG-25P.
Though derived from the T-3 the T-37 was an entirely new aircraft which, because of aerodynamic guidance by CAHI (TsAGI) and the use of the same type of engine, had more in common with the MiG Ye-150. The T-3A-9 system comprised this aircraft plus the Looch (ray) ground control system, the ground and airborne radars, a Barometr-2 data link, Kremniy-2M (silicon) NPP (sight) system and two Mikoyan K-9 (R-38) missiles. The aircraft had a wing which was basically a strengthened version of the T-3 wing, with no dogtooth and with anhedral increased to 3° (ie, -3° dihedral). Each flap could be extended out on two rails to 25° and did not have an inner corner cut off at an angle. A more important change was that to avoid scraping the tail on take-off or landing the main landing gears were lengthened, which meant that the wheels were housed at an oblique angle in the bottom of the fuselage. The fuselage was totally new, with a ruling diameter of 1.7m (12ft 7in). This was dictated by the Tumanskii R-l5-300 afterburning turbojet, with dry and reheat ratings of 6,840kg (15,080 Ib) and 10,150kg (22,380 Ib) respectively. The TsP-1 radar was housed in a precisely contoured radome whose external profile formed an Os – watitsch centrebody with three cone angles to focus Shockwaves on the sharp inlet lip. The whole centrebody was translated to front and rear on rails carried by upper and lower inlet struts. Surplus air could be spilt through two powered doors in each duct outer wall at Frame 8. The pressurized cockpit had a KS-2 seat and a vee windscreen ahead of a low- drag upward-hinged canopy with a metalskinned fixed rear fairing. The detachable rear fuselage was made mainly of welded titanium, and terminated in an ejector surrounding the engine’s own variable nozzle. Initially a sliding ring, this ejector was changed to an eight-flap design during prototype manufacture. Ram air cooling inlets
were provided at Frames 25 and 29, and in the detachable rear section were four door-type airbrakes. Under this section were two radial underfins, each incorporating a steel bumper. Pivoted 140mm (51/2in) below midlevel the tailplanes had 5° anhedral and did not need anti-flutter rods as they were irreversibly driven over a range of ±2°. Each main landing gear had levered-suspension carrying a plate-braked KT-89 wheel with an 800 x 200mm tyre. The long nose gear had a power – steered lower section with a levered-suspen – sion K-283 wheel with a 570x140mm tyre, and retracted backwards. A total of 4,800 litres (1,056 Imperial gallons) of fuel could be housed in three fuselage tanks (No 3 being of bladder type) and Nos 4 and 5 between wing spars 2 and 3. Provision was made for a 930 litre (204.6Imperial gallon) drop tank. Missile pylons could be attached ahead of the ailerons. Avionics included the radar, RSIU – 5A vhf/uhf with fin-cap antennas, RSBN-2 Svod (arch) navaid and SOD-57M transponder (both with fin slot antennas), Put (course) longer-range navaid, MRP-56P marker receiver, SRZO-2 Khrom-Nikel (chrome-nickel) IFF, Lazur (azure) beam/beacon receiver of the Looch/Vozdukh (rising) ground control system, KSI compass system and a ventral blade antenna for the flight-te st telemetry.
Like the rival Mikoyan Ye-150 series (which were produced more quickly) this weapon system was overtaken by later designs.
Dimensions
Span 8.56 m 28 ft 1 in
Length overall 1 9.4 1 3 m 63ft8!iin
Wing area (gross) 34 m2 366 ft2
(net) 24.69 m2 265.8ft2
Weights
Empty 7,260kg 16,005Ib
Loaded (normal) 1 0, 750 kg 23,699 Ib
(maximum) 12 tonnes 26,455 Ib
Performance (estimated)
Max speed at 15 km (49,21 3 ft) 3,000 km/h Service ceiling 25-27 km
Range 1,500km
(with external tank) 2,000 km
Two artist’s impressions of a T-37.
sors and loggers, computers, oscilloscopes and many kinds ofinstrumentation, overseen by a test and research crew which usually numbers five. The flight crew typically numbers three. Among the engines tested are the NK-86, D-18T and PS-90A turbofans, and the D-236 and NK-93 propfans. One of the photographs shows a former IL-76M used for testing large turbofans of the D-18 family. The other shows a former civil IL-76T used to test the TV7-117S turboprop and its six-blade Stupino SV-34 propeller. The propeller blades are heavily strain-gauged, the instrumentation cable being led forward from the tip of the spinner.
Another Ilyushin aircraft used in significant numbers as an experimental test-bed is the IL-18. Possibly as many as 30 have been used, mainly at the Zhukovskii and Pushkin test centres, for upwards of 50 test programmes. Nearly all are basically of the IL-18D type, powered by four 4,250hp AI-20M turboprops. The most famous ofthese aircraft is the IL-18 No75442, named Tsyklon (cyclone). Instantly recognisable from its nose boom like a jousting lance, this meteorological research aircraft is equipped with something in excess of 30 sensors used to gether data about atmospheric temperature, pressure and pressure gradient, humidity, liquid and solid particulate matter (including measurement of droplet and particle sizes) and various other factors which very according to the mission. The sensors extend from nose to tail and from tip to tip. Other IL-18 and IL-18D aircraft have helped to develop every kind of radar from fighter nosecones to giant SLARs (slide-looking airborne radar) and special mapping and SAR (synthetic-array radar) installations.
Top: IL-76LL with TV7-1 ITS Centre: Nose of IL-18 Tsyklon Bottom: Tu-134 radar testbed
Opposite page, bottom: IL-76LL with D-18T
A small number based at Pushkin tested the main radars and pointed radomes of supersonic aircraft, though this was done mainly by the Tu-134.
Total production of the Tu-134 passenger twin-jet was 853. Of course, the majority were delivered to Aeroflot and foreign customers, but a few went to the WS. From the mid – 1970s aircraft built as passenger transports began to be converted for use as military crewtrainers, including the Tu-134BUformil – itary and civil pilots to Cat IIIA (autoland) standard, Tu-134Sh for navigators and visual bomb aimers (actually dropping bombs to FAB-250 (551 Ib) size), Tu-134BSh for Tu-22M
Above: Tu-134 radar testbed
Left. Tu-134IMARK
Centre left: IL-28 for ski research
Bottom: Yak-25M testing Yak-28 engine icing
|
|
navigators andbomb-aimers, and Tu-134UBL for Tu-16 0 pilots. These are not experimental, nor is the Tu-134SKh with comprehensive navaids and avionics for worldwide land-use and economic survey. On the other hand at least 15 aircraft were converted for equipment testing and research. One has flown over 6,000 hours investigating the behaviour of equipment and Cosmonauts underweightless (zero-g) conditions. Several have been fitted with nose radars under development for other aircraft, including the installations for the Tu-144, Tu-160 and MiG-29. With the designation IMARK, aircraft 65906 has tested the Zemai polarized mapping radar able to operate on wavelengths of4, 23, 68 or 230cm (from Am to 7ft 7in). Arrays ofantennas look down and to the right side from the starboard side of the fuselage and a large ventral container. A generally similar but more versatile test aircraft is 65908. This is based at Zhukovskii together with a Tu-134 fitted with a giant parachute in the tail for emergency use during potentially dangerous research into deep-stall phenomena, which caused the loss of several aircraft with T-tails and aft-mounted engines.
Photographs show two other aircraft from the many hundreds used in the former Soviet Union for special tests. One shows an IL-28 used for research into the design, materials and behaviour of skis on different kinds of surface. A large ski mounted under the bomb bay near the centre of gravity could be rammed down against the ground by hydraulic jacks. On the ski were test shoes of different sizes, shapes and materials. The other photograph shows the Yak-25 test-bed fitted on the starboard side with the engine installation proposed for the Yak-28, with a sharp lip and moving central cone. Ahead of it was a water spray rig for icing trials.
Purpose: To improve BICh-7, the next stage beyond BICh-3.
Design Bureau: B I Cheranovskii.
BICh followed his Type 3 with the impressive BICh-5 bomber, powered by two BMW VI engines, but never obtained funds to build it. In 1929 he flew the BICh-7, almost a 1.5-scale repeat of BICh-3 with two seats in tandem. The problem was that he replaced the central tail by rudders (without fixed fins) on the wingtips, and the result was almost uncontrollable. He modified the aircraft into the BICh-7A, but was so busy with the BICh-11 and other projects that the improved aircraft did not fly until 1932. Apart from returning to a central fin and rudder he replaced the centreline wheel and wingtip skids by a conventional landing gear. The BICh-7A gradually became an outstanding aircraft. Testing was done mainly by N P Blagin (later infamous for colliding with the monster Maksim Gorkii), and he kept modifying the elevators and ailerons until the aircraft was to his satisfaction.
This larger ‘parabola-wing’ aircraft was again made of wood, veneer and fabric, with various metal parts including the conventional divided rubber-sprung main landing gears and tailskid. The tandem cockpits were en closed, which in 1932 was unusual. The engine was a l00hp Bristol Lucifer, and one of the unsolvable problems was that the Lucifer was notorious for the violence of the firing strokes from its three cylinders, which in some aircraft (so far as we know, not including the BICh-7A) caused structural failure of its mountings.
This aircraft appears to have become an unqualified success, appearing at many air – shows over several years.
Dimensions Span Length Wing area
|
12.5m 4.95m 34.6 nf
|
41ft 16 ft 3 in 372 ft2
|
Weights (BICh-7)
|
Empty
|
612kg
|
l,3491b
|
Fuel/oil
|
93kg
|
205 Ib
|
Loaded
|
865kg
|
l,9071b
|
(BICh-7A)
|
Empty
|
627kg
|
l,3821b
|
Fuel/oil
|
93kg
|
205 Ib
|
Loaded
|
880kg
|
l,9401b
|
Performance
|
Maximum speed
|
165km/h
|
102.5 mph
|
Range
|
350km
|
217miles
|
Landing speed
|
70km/h
|
43.5 mph
|
Purpose: To use aircraft to test experimental landing gears.
Design Bureau: Various.
No country has as much real estate as the former Soviet Union, and the land surface is at times soft mud, sand, snow and hard frozen. Several designers concentrated on devising landing gears that would enable aircraft to operate from almost any surface. One of the first was N A Chechubalin, who in the 1930s was working at BRIZe, a division of Glavsev – morput’, the chief administration of northern (Arctic) sea routes. He devised neat tracked main gears to spread the load and enable aircraft to operate from extraordinarily soft surfaces. His experimental gears were tested on a U-2 and a much heavier Polikarpov R-5.
In 1943 SAMostovoi picked up where Chechubalin had left off and designed caterpillar main landing gears for an Li-2 transport (the Soviet derivative of the DC-3) These gears were retractable, and made little difference to the performance of the aircraft, but they were ‘unreliable in operation’ and were therefore not put into production. Photographs have not yet been found.
In 1937 Nikolai Ivanovich Y efremo v collaborated with Aleksandr Davidovich Nadiradze to design a unique inflatable gear which offered a totally different way of reducing footprint pressure in order to operate from almost any surface. Their answer was an ‘air pillow’ inflated under a semi-rigid upper sheet attached under the aircraft centreline. The scheme was called SEN, from the Russian for ‘Aircraft Yefremov/Nadiradze’. The pillow was tested on a Yakovlev AIR-20 (UT-2), which was fitted with a 20hp motorcycle engine driving a compressor to keep the bag inflated. The only known photo does not show the wingtips clearly, so it is not known if wingtip skids were needed to stop the aircraft rolling over. In 1940 the SEN was test-flown by such famous pilots as Gromov, Shelest and Yumashev, but it never went into general use.
In 1991 the new private company Aeroric, at Nizhny Novgorod (in Communist days called Gorkii), began the design of amultirole transport called Dingo. Powered by a 1,100- shp Pratt & Whitney Canada PT6A-65B turboprop, driving a Hartzell five-blade pusher propeller, the Dingo is made mainly of light alloy and accommodates one or two pilots and up to eight passengers or up to 850kg (1,8741b) of cargo. Its most unusual feature is that it has no conventional landing gear. Instead it has a 250hp Kaluga TBA-200 (in effect a turbofan) which generates an air cushion underneath, contained by inflated air bladders along each side and hinged flaps at front and rear. At full load the ground pressure is a mere 0.035kg/cm2 (71.71b/ft2), enabling the Dingo to ride over water, snow or any other surface and to cross ditches, ledges and projections up to 30cm (1ft) high. Cruising speed is275km/h(170mph).
Though a surface skimmer rather than an aeroplane, the Stela M.52 seen at the 1995 Zhukovskii airshow was interesting for riding on an air cushion. This is contained by side skegs (underfins), a large rear flap and front hinged curtains.
Purpose: To evaluate a fighter with a variable-incidence wing.
Design Bureau: Zhukovskii WA, Soviet air force academy; design team led by Professor S G Kozlov.
Kozlov was perpetually seeking after new targets, and one that he had considered for many years was the pivoted wing, able to change its angle of incidence. Thus, for example, the aircraft could take off or land with a large angle of attack yet with the fuselage level. Four Russian designers had made unsuccessful variable-incidence aircraft in 1916-17. Design of the El (Eksperimentalnyi Istrebitel, experimental fighter) began in 1939. Under Kozlov’s direction the wing was designed by V S Chulkovand the landing gear by M M Shishmarev. D O Gurayev was assistant chief designer, and S N Kan and IA Sverdlov handled the stressing. The single El was constructed at a factory in the Moscow district, but its completion was seriously de layed, mainly by technical difficulties and repeated alteration of the drawings. At last the El was almost complete in autumn 1941, but on 16th October the factory was evacuated. The El and all drawings were destroyed.
The El was said to have been a good-looking single-seat fighter, powered by a 1,650hp M-107 (VK-107) liquid-cooled engine. The fuselage was a Duralumin stressed-skin semi- monocoque of oval section, with heavy armament around the engine. The wings had spars with steel T-booms and Duralumin webs, with glued shpon (Birch veneer) skin. The wing was fitted with flaps and differential ailerons, and was mounted on ball-bearing trunnions on the front spar and driven by an irreversible Acme-thread jack acting on the
While no illustration has been found of the El, this 1940 drawing recently came to light showing a fighter project with a more powerful engine (M-106P) and greater span.
rear spar. To avoid problems it is believed the main landing gears were attached to the fuselage and retracted into fuselage compartments. No other details survive.
There is no reason to believe that the El would not have met its designer’s objectives, but equally it had little chance of being accepted for production. The only successful variable-incidence aircraft was the Vought F8U (F-8) Crusader.
Dimensions
Span 9.2m 30 ft 2K in
No other data.
| |