Category Salyut – The First Space Station

Memories

For more than 36 years the ashes of cosmonauts Georgiy Dobrovolskiy, Vladislav Volkov and Viktor Patsayev have rested in niches in the Kremlin’s wall. In addition to their families, they were mourned by hundreds of engineers, technicians, officers, cosmonauts and politicians. Despite the tragedy, there was a determination that the DOS programme must continue. The programme would never have come about if it were not for the support of Dmitriy Ustinov and Sergey Afanasyev, the so-called ‘Space Minister’. They supported the proposal initiated by Boris Raushenbakh, Boris Chertok and Konstantin Feoktistov at the TsKBEM to modify the Almaz military reconnaissance station which was being developed by a rival bureau led by Vladimir Chelomey, to serve as a long-term station for scientific research. Although Vasiliy Mishin, in charge at the TsKBEM, was antagonistic, these men succeeded not only in getting the programme started but also in making it the dominant element of the Soviet space programme.

On the operational side, General Nikolay Kamanin managed the training of the cosmonauts. The cosmonauts whose lives were most affected by the early years of the DOS work were Vladimir Shatalov, Aleksey Yeliseyev, Nikolay Rukavishnikov, Aleksey Leonov, Valeriy Kubasov and Pyotr Kolodin. For months, together with Dobrovolskiy, Volkov and Patsayev, these men trained to operate the world’s first space station, Salyut.

Let us conclude by reviewing the lives of the key people of the programme after its disastrous early years.

CODE ‘111’

At 1.45 a. m., almost seven minutes after finishing the braking manoeuvre, Soyuz 11 crossed the coast of Portugal. Shortly thereafter the automated system rotated it through 90 degrees in order to position the orbital module on top and the propulsion module facing down. At 1.47.28 a. m., while passing over France, twelve explosive charges jettisoned the orbital module and six more jettisoned the propulsion module. Because the main radio transmission equipment was in the propulsion module, this terminated all signals from the descent module except those from the VHF antenna incorporated into the descent module’s hatch. Shortly thereafter it came within range of the antennas at Yevpatoriya, but the controllers still did not know that the braking manoeuvre had been achieved and that, consequently, the descent module was on its way home. If everything was going to plan, then by now they ought to have picked up the VHF transmission. Although Kamanin ordered Dobrovolskiy to report, there was no reply. If the braking manoeuvre had not been performed, then the spacecraft would be in communication between 1.49.37 a. m. and 2.04.07 a. m., and when this session opened Shatalov, who was responsible for communications during re-entry, made repeated calls to no effect.

Just like everyone else in the TsUP, Yeliseyev, the technical flight director, was surprised: “We had asked Dobrovolskiy to make continuous reports as soon as the descent module entered our communication zone, but he was silent. It was strange that Volkov was silent too – he had been very talkative in the recent sessions.”

As time passed without news, the anxiety amongst the people in the main control room rapidly increased as they realised that something must have happened. In fact, no one could have imagined the terrible event that had overwhelmed the crew in the cramped descent module.

Soyuz 11 flew over Germany and Poland and onto Soviet territory. At 1.54 a. m. the Soviet tracking radars reported that they had detected it north of the Black Sea at an altitude of about 40 km and 2,200 km from the aim point. It was sheathed by plasma, and hence temporarily out of radio contact. The radar detection was good news, because it confirmed that the spacecraft was on its way home. The controllers in the TsUP assured one another that the silence from the crew must be the result of a radio system failure. The tracking radars reported the reducing range: “Distance 1,800 … 1,000 … 500 … 100 … 50 km from the planning landing site.”

The small drogue parachute deployed on time. Then, at 2.02 a. m., at an altitude of about 7 km, the main chute deployed. During the 15 minutes or so of the descent on the main chute the crew were to make radio contact with the recovery team via the VHF and short-wave antennas built into the shrouds of the parachute, but there was no word. The basal heat shield was automatically jettisoned. At 2.05 a. m., with 13 minutes remaining, the recovery crews on an IL-14 aircraft and four Mi-6 and Mi-8 helicopters reported to the TsUP that they could see the module swinging on its red – and-white main chute and that they had detected signals from it, although there was still no word from the cosmonauts.

The manager of the recovery team, General Kutasin (call-sign ‘No. 52’), who was in one of the helicopters, reported directly to the TsUP. The clarity of this radio link was excellent. According to Yeliseyev, beaming smiles came to the faces of the controllers upon hearing that a transmission had been received from the antennas on the main chute – the first signals received from Soyuz 11 since it departed from the communication zone during preparations for the orientation manoeuvre above the Pacific Ocean: “Finally, we heard a report from a helicopter in the planned landing area that they could see the parachute. It was wonderful! … Then, the report from

The recovery team spotted Soyuz 11 descending on its main parachute (top left). It landed on its side (top right), and a few minutes later the recovery helicopters landed alongside (bottom).

No. 52: ‘It has landed. Our helicopters are landing nearby.’ Well, it seemed that was all. Next, they would report the general state of the crew, and with that we would finish our work. Only a few minutes more.”

Colonel Ivan Borisenko, the ‘Sporting Commissar’, who was actually the member of the recovery team responsible for officially logging the landing parameters, has written: “There was no radio contact with the cosmonauts. … From the Mi-6 in which I was flying we saw the descent module slowly descending,

swinging under the large canopy of the parachute. The soft-landing retro-rockets fired correctly, the module almost stopped for a moment in the air, then settled onto the ground.”

The four small rockets automatically fired at a height of 1 metre in order to soften the landing, in the process raising a cloud of dust. At 2.16.52 a. m., Soyuz 11 landed 202 km east of Dzhezkazgan, having overshot the target by 10 km. Exactly 23 days 18 hours 21 minutes 43 seconds had elapsed since it lifted off from Baykonur. At almost the same time, the helicopters landed nearby.

The TsUP awaited General Kutasin’s next report, but the radio remained silent.

Yeliseyev recalls the dramatic wait:

Five minutes passed by; 10; 15. … No news from No. 52. … How strange. Usually, someone remains in the helicopter to report on the radio the events as they happen…. One hour has passed. … No. 52 is still silent. … It means that something has happened. …

Suddenly, using an internal channel, Kamanin asked me to come. He was alone in the room used by the State Commission. He never called someone without a reason. As I ran to him, he looked darkly at me and said: “Now they have given me the code ‘111’, which means that they have all perished. We agreed a code: ‘5’ means that their general state is excellent; ‘4’ means good; ‘3’ means there are injuries; ‘2’ means severe injuries; ‘1’ means that a man perished; ‘111’ means that all three perished. It is necessary for us to fly to the landing site, I have ordered the plane.”

Kamanin, Shatalov and I were immediately driven to the airport, where an aircraft was ready. I can no longer remember the airport at which we landed. We transferred to a helicopter and were flown to the landing site.

Kamanin did not mention the ‘111’ code in his diary, but he wrote that for at least the first 30 minutes whenever he asked for a report from the landing site the reply

The Soyuz 11 recovery operation was handled on site by Kamanin’s aide, General Leonid Goreglyad.

was always: “Wait.” Then he received the following message: “General Goreglyad has flown from the landing site to Dzhezkazgan and reported via [short-wave] radio that the outcome of the space flight is the most tragic one.”

VASILIY PAVLOVICH MISHIN

Although Mishin’s leadership of the TsKBEM was criticised in the aftermath of the Soyuz 11 tragedy, he retained his position owing to support by Sergey Afanasyev, the Minister of General Machine Building, and Andrey Kirilenko, who was a close colleague of Brezhnyev in the Politburo. Mishin’s relationship with Ustinov is very interesting. At first sight it may appear that he was always backed by Ustinov (for how else could he have remained in post despite the deaths of four cosmonauts, the fiasco of the L1 circumlunar programme, the repeated failures of the N1 rocket for

the N1-L3 lunar programme and the loss of two DOS stations before they could be visited) the relationship between the two men was actually much more complex. For instance, when asked in an interview with the eminent space journalist Vladimir Gubaryev about Ustinov’s nomination to lead the Soviet rocket programme, Mishin said: “I am not sure that it was the best choice! It is hard to say whether he brought more harm or good.’’

During the eight years that Mishin ran the main Soviet space institution, he was a controversial figure. He was unfortunate in gaining leadership at a time that NASA accelerated its space programme and won the ‘race’ to be the first to land a man on the Moon. To understand how the Soviet Union lost this race it is necessary to analyse Mishin’s leadership in the context of the roles of Afanasyev and Ustinov, and indeed of the input of Brezhnyev and Kosygin. However, in technical terms, the failures of Mishin’s years in charge of the TsKBEM were, in large part, the result of decisions made by this organisation, initially by Korolev and later by himself.

In terms of Earth orbital flights, Mishin’s period will be remembered for a series of failures, two of which concluded tragically for the crews – the only such losses to date in the programme. Even so, he retained the support of Afanasyev and Ustinov. He was replaced only after the cancellation of the N1-L3, the organisation of which was largely directed by Afanasyev and Ustinov!

The year 1971 marked a low point for the Soviet space programme, with the third launch of the giant N1 lunar rocket ending in failure, the Soyuz 11 tragedy and the deaths of three of the leading rocketry specialists: Aleksey Isayev, Georgiy Babakin and Mikhail Yangel. The disasters continued in 1972 with the loss of DOS-2 and the final N1, and into 1973 with the loss of DOS-3.[125] Although the design of the N1 was criticised by the leading designers at some of the other organisations (and indeed by some of the people in OKB-1/TsKBEM), Mishin continued to work on it, confident that it would soon become operational and enable cosmonauts to walk on the Moon. But the L3 concept was also criticised – if the manner in which the Americans had gone about landing on the Moon was extremely risky, the way that Mishin planned to do it seemed highly likely to result in the loss of the cosmonaut who attempted to execute it.

Mishin often did things in his own way. When dealing with issues about which he really ought to have consulted with his deputies, he made decisions on his own. An excellent example was his ‘contract’ with Chelomey – which marked the beginning of his downfall. Also, owing to his abrupt manner, his intolerance of criticism, and his frequent heavy drinking (sometimes at the TsUP during missions) the number of people whose respect he lost progressively grew. When he lost the support of some of his close colleagues, including Bushuyev and Chertok, this divided the TsKBEM into two factions, one wishing to push on with what was now really no more than a dream of a lunar programme and the other considering the DOS programme (which Mishin wished to discard) as the basis for a strong space programme. When Mishin ignored this ‘mutiny’ by his closest colleagues, the Kremlin stepped in and made its

“The gene of renunciation.” During his 8 years in charge of the TsKBEM, Vasiliy Mishin (third from the left), with the support of Minister Sergey Afanasyev (fourth from the left), worked with the objective of reaching the Moon. After his dismissal in 1974, Mishin (right photo) worked as a professor of space rocket technology at the Moscow Aviation Institute.

dissatisfaction clear, and in 1974 he was replaced by his old rival Valentin Glushko. To Ustinov, Mishin said: “I understand everything, except the reason for choosing Glushko.” Although Glushko’s management had its critics, he successfully turned the TsKBEM into an empire on a scale that Mishin could never have achieved.

Mishin was appointed as a professor of space rocket technology at his alma mater, the Moscow Aviation Institute (MAI). In fact, since 1958 he had been lecturing at Lomonosov University in Moscow, and he continued to do this in parallel with MAI. One of his students was Valentin Lebedyev, who joined the TsKBEM, trained as a cosmonaut, and flew as the flight engineer of Soyuz 13, which was the last mission to be flown during Mishin’s term as Chief Designer. While a professor at the MAI, Mishin was able to supervise nine master’s theses and eight doctorates. Those who knew him in these years say he showed two different personalities. At times he was rough, explosive, intolerant and brusque, just as he had been when Chief Designer while speaking his mind in dealing with politicians and generals. But the second personality on display at the MAI was much more pleasant. As a teacher, he transmitted to generations of students his rich experience in the design of rockets. He directed the Department for the Design and Construction of Flying Vehicles at the MAI (later Department 601, Space Systems and Rocket Design) until 1990, and in 2002 its laboratory was given Mishin’s name. He co-authored a number of study-books that are still in use today. In addition, he directed a students’ design bureau where, among other projects, the first Soviet non­hermetic satellite was constructed.[126]

In the second half of the 1980s, after Mikhail Gorbachov had become the General Secretary of the Communist Party of the Soviet Union, Mishin gave interviews and published several works designed to vindicate his still controversial contribution to cosmonautics. Although the CIA had been aware since the 1960s that a man named

Mishin was a key figure in the design of Soviet rockets, it was not until now that his identity was allowed to become public. In Why Didn’t We Fly to the Moon? which was published in December 1990,[127] he described, for the first time, the Soviet lunar programme in detail. Always sharp and direct in his manner, he wrote:

They accused me of not defeating the Americans. But everyone knew right from the beginning that the Americans would win. Our leaders did not listen. After the Americans had done it, we said that we were ready to do it better, but they would not let us try.

In conclusion, he wrote:

Often the question arises: If Korolev had not died, what would have come of our space programme? It is my view that not even he, with all his authority, persistency and predisposition for achieving goals, could have dealt with all the processes that have caught all areas of activity in our society. It would have been difficult for him to work without directives, . . . which followed an incomprehensible politics even during his lifetime. Without doubt, he would have achieved something. We could have had a landing on the Moon, … but sadly not within the deadlines that were imposed on us for prestige over the USA. Too much time had been wasted, and so much money was needed, but the directives did not provide it.

I do not wish readers to think that I am trying to avoid my responsibility as Chief Designer for some of the mistakes that were made in the course of the lunar programme – some by myself. He that does not do anything, does not make errors! We, the successors of Korolev, did everything that we could, but it was not enough.

Aleksey Leonov has strongly criticised Mishin for wasting the money available to the lunar programmes. Leonov firmly believes that in 1968 the Soviets could have beaten the Americans to a circumlunar flight. In fact, Leonov was to command the first L1 crew and, if the N1 rocket had worked and the N1-L3 programme had gone ahead, he would have been the first cosmonaut to attempt to land on the Moon. It is likely that Leonov’s hostility towards Mishin originated with the cancellation of the L1 programme without even attempting a manned mission, and was then worsened by Mishin’s order for Leonov’s crew to stand down and let Dobrovolskiy’s crew fly the Soyuz 11 mission.

Although Mishin persistently denied being directly responsible for the failures of the Soviet manned space programme in the years 1966 to 1973, when asked why he had been so antagonistic to the DOS programme he confessed: “I only understood it later on. In those years, I was not aware that I was making a mistake. The point is that 80 per cent of the tasks that were beneficial to the national economy could have been done by unmanned spacecraft.’’

Few people at the TsKBEM felt sorrow at Mishin’s dismissal as Chief Designer.

In writing his memoirs, Boris Chertok did not feel it appropriate to explain anything about Mishin’s subsequent career.

After leaving the TsKBEM, Mishin left its work behind. Only twice did he cross the doorstep of NPO Energiya. His only real support was his family: his wife Nina Andreyevna, with whom he spent 63 years, and his daughters Yelena (who worked for Korolev and for her father for 40 years), Kira and Vera.

Vasiliy Mishin died on 10 October 2001, aged 84, and was buried five days later in Trekurovskoye Cemetery in Moscow.[128] During a ceremony on 18 January 2007 to mark the 90th anniversary of his birth, his eldest daughter, Yelena, said: “As time goes by, all the things which remind me of my father and link me to him become dearer to me. He did not have relatives in high positions or strong contacts with the top man. He had only his wife and three daughters. . . . Yes, he always said what he thought. He never stepped back from anyone. He was wise, intellectual and a man of honour. It has been said that every scientist must have a gene of renunciation. . . my father had such a gene.’’

“DOBROVOLSKIY WAS STILL WARM”

When the State Commission was informed of the terrible news, Afanasyev, Mishin, Kerimov and others refused to believe it, and asked for confirmation. About an hour later, General Uglyanskiy reported from the landing site that within a few minutes of the module landing, members of the recovery team, led by General Goreglyad, had opened the hatch and found the cosmonauts inert and without any signs of life.

Interestingly, Chertok has a different account of events in the TsUP immediately after the landing. In the absence of reports from the landing site, General Kerimov had thought that Marshal Kutakhov, the Commander in Chief of the Air Force, and as such in overall command of the recovery team, wished to have the privilege of informing the Kremlin of the successful conclusion of the historic mission. In fact, this report should have been made by Kerimov, who, as the Chairman of the State Commission, was responsible for reporting to Moscow; specifically to Ustinov and Smirnov. After 30 minutes without a communication from the landing site Kerimov decided that he really should call Ustinov to complain about the breach of protocol. But then he learned the truth. Pale, Kerimov gave the tragic news:

Two minutes after the landing, members of the recovery team ran from the helicopters to the descent module, which was laying on its side. Outwardly, there was no damage whatsoever. They knocked on the side, but there was no response from within. On opening the hatch, they found all three men in their couches, motionless, with dark-blue patches on their faces and trails of blood from their noses and ears. They removed them from the descent module. Dobrovolskiy was still warm. The doctors gave artificial respiration. Based on their reports, the cause of death was suffocation. There were no strange smells in the cabin. The procedure for evacuating the bodies to Moscow for analysis has been accepted. Specialists from Podlipok and the TsPK have set off for the landing site.

The stunned silence in the crowded control room was broken when someone said that the spacecraft must have suffered a decompression that had exposed the crew to the vacuum of space.

When the recovery team had run from their helicopters to the descent module, it was believed that the silence from the crew was simply the result of a radio failure. The team included Air Force doctors to assist the cosmonauts – who must surely be debilitated by their return to gravity after three and a half weeks in weightlessness. When the crew failed to respond to loud banging on the side of the module, they urgently opened the hatch and were shocked to find the men inert, as if asleep or unconscious. But the fact that their bodies were limp and there were trails of blood indicated that they were injured; even though the cause was not apparent. Normally, the recovery team would simply assist the cosmonauts to emerge from the 60-cm-diameter hatch. It would be more difficult to extract their inert bodies. The task was complicated by the fact that the module had come to rest with the couches stacked one above the other. One man reached into the cramped cabin, released the belt on Dobrovolskiy’s couch and drew him out. Patsayev’s couch was higher up. Owing to the manner in which the hatch swung into the cabin, it was more difficult to reach Volkov. As each body was retrieved, the doctors applied manual cardiopulmonary resuscitation. The activity was recorded by a film camera brought to document the joyous return. Furthest away was Dobrovolskiy. His body was still warm and limp. His bearded face was lifeless, his mouth was open and there was a dark patch on his right cheek. His rescuers valiantly tried to revive his heart using chest compression and lung ventilation. To the right, military medics tried to revive Volkov, with one positioned on the body to exercise the chest while the other knelt to give ventilation. Volkov’s right sleeve had been rolled up in order to attempt a transfusion. Nearest the cameraman was Patsayev, with his body oriented in the opposite direction to the others, and with a civilian medic to either side of him, attempting resuscitation by artificial respiration.

It would later be determined that when the recovery team pulled the cosmonauts from the module they had been dead for in excess of 30 minutes. Furthermore, they had spent 11.5 minutes exposed to vacuum. Humans and experimental animals had sometimes suffered rapid decompression in terrestrial laboratories or on scientific balloons at high altitude, but the Soyuz 11 crew were the first humans to suffer the vacuum of space at an altitude in excess of 100 km. Cardiopulmonary resuscitation is only likely to be effective if given within six minutes of the cessation of the heart, since after this the brain is permanently damaged. The rescuers had stood no chance of reviving the cosmonauts.

There is only one film record of the rescue effort. It shows two medics tending to each body. In addition to manual chest compression and lung ventilation, they had heart-lung and defibrillation (electroshock) apparatus. The effort was observed by a number of military officers, some standing close by and the others waiting beside the helicopters.

As there are no official reports available from the people directly involved in the effort to resuscitate the crew, the details remain unknown. Colonel Borisenko only briefly reported: “We ran to the landing point. The recovery team opened the hatch and pulled out Dobrovolskiy, Volkov and Patsayev, who had no indications of life. The doctors did everything possible, but it was too late. Based on the preliminary examination by Dr. Anatoliy Alexandrovich Lebedyev at the landing site, the crew perished from the rapid decompression of the cabin of the ship.”

One of the doctors, and one of very few witnesses to the drama at the landing site, was Levan Stezhadze: “For more than an hour we tried to resuscitate them with the heart-lung machine. The heart reanimation lasted over an hour. We tried using the defibrillation equipment. It was good apparatus. … However, there were no signs to show that revival was possible. For example, when I inserted a needle into the heart of one cosmonaut, instead of blood there was only air.”

Drama at the landing site. Top left: Medical workers try to revive Dobrovolskiy. Top right: Medics attend to Patsayev (foreground) and Volkov (in the middle). Bottom left: After conceding that the cosmonauts were dead, their bodies were draped with white blankets. Bottom right: Specialists begin the inspection of the descent module.

VLADIMIR NIKOLAYEVICH CHELOMEY

The empire that Chelomey had spent many years building up began to decay when Ustinov became the Minister of Defence in 1976. As Ustinov did not wish to have two institutions working on manned space projects, Branch No. 1 of the TsKBM at Fili was transferred to NPO Energiya.[129] It was therefore ironic that whereas Mishin had sought to offload the DOS programme to Chelomey, Almaz was removed from Chelomey and handed to the TsKBEM’s successor! However, later Fili became KB Salyut, and eventually joined the Khrunichev Centre.

Vladimir Chelomey. The DOS design was derived from his Almaz reconnaissance station.

After Ustinov had left office, work began on an unmanned version of the Almaz, but progress was so protracted that Chelomey did not live to see its completion. He died on 8 December 1984, aged 70. He had been taken to hospital following a car accident, and during medication an artery became blocked. So ended the life of one of the Soviet Union’s greatest designers of missiles and space rockets.

CHELOMEY AND THE KREMLIN

Mishin’s TsKBEM was not the only design bureau in the USSR involved in the development of manned spacecraft. In Moscow’s eastern suburb of Reutov, 30 km south of Kaliningrad, was the headquarters of OKB-52, which in 1966 changed its name to the Central Design Bureau of Machine Building (TsKBM). It was led by Vladimir Nikolayevich Chelomey. Although there was only one letter different in the titles of the two bureaus, namely the ‘E’, Chelomey, having a staff of only 8,000

employees, had much more modest capabilities. However, because Chelomey had good relations with the military, having developed a number of cruise missiles, and because one of his engineers was the son of Nikitha Khrushchov, in the early 1960s his bureau was the main competitor to OKB-1.

In 1963 Chelomey conceived the idea to develop a military Orbital Piloted Station (OPS) equipped with cameras to monitor the US and NATO military facilities. The project was named Almaz (‘Diamond’), this name being in keeping with the practice of naming his products after precious stones. When designers from the Central Scientific-Research Institute for Machine Building (TsNIIMash) visited OKB-52 in the spring of 1964 they were shown the mockup of the station and its return capsule. It was to be launched by the powerful UR-500 Proton rocket that Chelomey was developing.[4] However, the Ministry of Defence was unwilling to finance the project. Undeterred, Chelomey sought the behind-the-scenes support of his military contacts.

In the meantime, after the assassination of John F. Kennedy, Lyndon B. Johnson became the American president. On 10 December 1963 he cancelled the US Air Force project to build a small winged ‘space plane’ named Dyna-Soar, and it was announced that plans would be drawn up for a new military space programme: the Manned Orbital Laboratory (MOL). This was to monitor the activities of Soviet military forces and observe rocket launching sites, airfields and naval bases. Since methods for rendezvousing and docking in space had yet to be developed, the plan was to launch the MOL with the crew of two military astronauts riding on top in a modified form of the Gemini spacecraft which NASA was at that time developing. The mission would last a month, and the MOL would be abandoned when the crew departed.

The capabilities of the MOL prompted the Kremlin to back Chelomey’s proposal, and the project was given to OKB-52’s Branch No. 1 at Fili, in the heart of Moscow, which had developed the Proton launch vehicle. The manager was Branch No. 1’s Chief Designer, Viktor Bugayskiy. On 12 October 1964, the day that Chelomey announced the start of work, the first Voskhod spacecraft was launched for a 1-day flight with a crew of three cosmonauts. While they were in space, Khrushchov was overthrown – and Chelomey lost his main supporter. The situation was particularly dire because, as Khrushchov’s favourite, Chelomey had gained many enemies. Not only was the new Kremlin leader, Leonid Brezhnyev, not an ally, the new Prime Minister, Aleksey Kosygin, was very rude to Chelomey during their first telephone conversation regarding the future of the UR-200 rocket programme. In fact, neither Brezhnyev nor Kosygin shared Khrushchov’s enthusiasm for manned space flights.

Another man of special importance was Dmitriy Ustinov. Since 1946 he had been responsible for the development of the Strategic Rocket Forces. He was known as ‘Uncle Mitya’ to the leaders of the design bureaus. His influence declined in the Khrushchov years, but his position was reinforced by the arrival of Brezhnyev, and in March 1965, in a major restructuring of the Soviet rocket and space programmes, he became the Secretary of the Central Committee of the Soviet Communist Party responsible for defence and space.

CHELOMEY AND THE KREMLIN

Vladimir Chelomey (left), the Secretary for Defence and Space Dmitriy Ustinov and

‘Space Minister’ Sergey Afanasyev.

Despite the scepticism of Brezhnyev, Kosygin and Ustinov, Chelomey still had the strong support of the generals in the Soviet Air Force and the Strategic Rocket Forces. He also had the support of Mstislav Keldysh. As a long-time companion of Korolev and proponent of using rockets and satellites to facilitate scientific studies, Keldysh was one of the most eminent figures in the rocket and space programme. In fact, he had played a key role in the establishment of OKB-52 in 1955. To mark his contribution to the management of the pioneering manned space flight by cosmonaut Yuriy Gagarin in April 1961, Keldysh had been appointed President of the Soviet Academy of Sciences. In Brezhnyev’s government, the Ministry of General Machine Building was the public name for the secret rocket and space industry – the bland name was to mask the significance of its work. In March 1965, Kosygin nominated Sergey Afanasyev as the first ‘Space Minister’. On 25 August 1965 President Johnson gave the formal go-ahead for the MOL project, which was to make its first flight by the end of 1968. Two months later, on 27 October, Afanasyev signed the order for Almaz. The preliminary paperwork was drawn up in 1966 and, based on regulations signed by the Council of Ministers and the Central Committee of the Soviet Communist Party, on 14 August 1967 the technical requirements and timescale were specified.

‘MOM’ DOESN’T RELEASE ‘DAD’

To dock with the Salyut station was a four-stage automated process over which the cosmonauts had no control. The first stage was the initial mechanical contact, when the head of the active spacecraft’s probe touched the interior of the conical drogue. This activated a sensor in the shock absorber on the probe. Then stabilisation thrusters were to slowly force the ship forward to drive the head of the probe into the hole at the apex of the cone, which the engineers referred to as the ‘nest’. When the head of the probe penetrated the nest, this initiated the capture stage, and latches in the nest engaged the probe in order to prevent it slipping out. The Apollo spacecraft had a similar system, and American astronauts refer to this as a ‘soft docking’. The third stage involved retracting the probe to draw the two annular collars together, to engage latches which would form a rigid bond and establish electrical and hydraulic connections located around the external rim – a status that astronauts refer to as a ‘hard docking’. Then the probe would release its head, which would remain in the nest while the ‘beheaded’ probe withdrew into the housing on the nose of the orbital module. Once air had been introduced to the hermetic tunnel and the seals verified, the cosmonauts could swing back the hatch, complete with the docking assembly, to enter the tunnel and then swing the drogue into the station.

In the case of Soyuz 10, the problem struck between the second and third stages – during the retraction, 9 minutes after the first contact. The only physical connection was the head of the probe in the nest. However, owing to an oversight in planning, the control system of the Soyuz spacecraft was still operating and when this noticed an early deviation in attitude it fired the thrusters in an effort to eliminate the ‘error’. If the spacecraft had been free, these impulses would have conformed to the logic of the control system; but it was not free – its probe was confined by the drogue. Upon finding that the spacecraft did not conform to its logic, the control system started to fire the thrusters on a continuous basis in an effort to assert its authority, and this subjected the probe to dynamic forces sufficiently strong to break one of the four

levers surrounding its base. The probe was designed for a maximum force of 80 kg, but survived a load of 160-200 kg before failing.

The first error in the design of the docking process was to leave the spacecraft’s control system active after the initial capture, because the conditions required by its logic no longer applied. The second error was to make the docking sequence fully automated once it had been initiated by the mechanical contact. Yeliseyev, who had participated in the development of the control system, had realised that the control system was jeopardising the docking process, but had no way to intervene – he was a frustrated spectator.

As Soyuz 10 was a 7K-T spacecraft designed to operate as a space station ferry, it carried air, water and food for just 3 days of autonomous operations. There was no option but to return to Earth as soon as possible.

The task was to separate from the station in a manner that would not damage the drogue. In designing the undocking process it had been assumed that the docking would have been finished and that commands could be directed through the circuits in the collars – which was impossible in this case. What would normally occur was that after the crew had left the station they would seal the Soyuz hatch and then command the latches to release the head of the probe from the nest so that the spacecraft could fire its thrusters to withdraw. However, in this unpredicted situation it was possible that the mechanism would fail to release. Indeed, the first attempt failed, and when Shatalov fired the thrusters his spacecraft simply swung around on its damaged probe.

In the control room General Andrey Karas, the Commander of Space Assets in the Strategic Rocket Forces, said bitterly: “Well, congratulations. You’ve developed a docking system in which ‘mom’ doesn’t release ‘dad’!’’

There were two emergency options: one to cut loose the docking mechanism from the nose of the orbital module, and the other to release the orbital module itself. In both cases the only access point to Salyut would be left fouled.

Afanasyev of the Ministry of General Machine Building issued a directive: ‘‘This ‘amputation’ is not suitable. What do you want? To lose the first orbital station? Search for a method by which to deceive your super-clever scheme.’’

Salyut was saved by Zhivoglotov, the engineer who had appalled the control room by outlining eight possible reasons for the docking failure. After Zhivoglotov had outlined his plan, instructions were read up to Rukavishnikov who, during the 84th revolution, once again entered the orbital module and reconnected a number of the cables to deceive the mechanism into thinking that the release command came from Salyut. The command was issued on the next revolution by the cosmonauts using their command panel – and the latches released the head of the probe! At 10.17 a. m., after 5 hours and 30 minutes of drama, and during the 5th revolution spent in a soft – docked configuration, Soyuz 10 withdrew from the station. The news prompted loud applause in the TsUP. Although Soyuz 10 had not achieved its main objective of boarding Salyut, everyone hoped that the station was undamaged and therefore would be available to a future mission.

For almost half an hour Soyuz 10 flew in formation with Salyut, with Shatalov manoeuvring while his colleagues inspected and photographed the docking system.

Few of these black-and-white pictures were published, and those that were released were of a poor quality. Nor was the television from the spacecraft during this period released. On Saturday, 24 April, Moscow TV declared that the docking had taken place and showed a 30-second clip which was said to be from an automatic camera on Salyut as Soyuz 10 withdrew. The Earth was in the background. The only part of the station that was visible was just in front of the camera, and was brilliantly white. The docking was portrayed as having been successful, with the link-up being only a test in an ongoing programme – there was no suggestion that the cosmonauts were to have entered the station.

ALMAZ

The Almaz orbital complex had four major segments:

• the manned spacecraft which formed the re-entry vehicle (VA);

• the working compartment;

• the compartment with the apparatus for taking long-focus photographs; and

• the propulsion module.

As with the American MOL, in its original design the Almaz was to be launched with its crew riding in a spacecraft on top. This eliminated the task of developing a rendezvous and docking system. However, further analysis led to a revision of this concept. In particular, because the presence of the heavy manned spacecraft would

reduce the mass of the space station, and hence the amount of scientific and military equipment that it could carry, in 1967 the State Commission endorsed a two-launch option in which the space station and the manned spacecraft would be autonomous vehicles. This would not only enable the station to grow in mass to exploit the 20- tonne payload capacity of the Proton, it would also allow the station to be operated by a series of crews. Furthermore, because the crew was to be launched by a Proton, it was decided to mate the re-entry vehicle to a Functional-Cargo Block (FGB)[5] to produce the 20-tonne Transport and Supply Ship (TKS)[6] which would dock with the station to deliver a crew together with the cargo required for their tour of duty. The crews would be exchanged at intervals of two or three months, and the station would have an operational life of up to two years, being unoccupied only during the short intervals between one crew departing and the next one arriving. This revision would make more efficient use of the hardware than the original plan.

On board Almaz, the crew would use equipment that could be precisely aimed to study military targets on Earth, including camouflaged and mobile ones. In addition, it would be possible to undertake scientific and ecological monitoring, including the early detection of bushfires and the spread of pollution by rivers to the oceans. The equipment was state of the art for that time. The primary optical instrument was a photographic camera that used a mirror with a diameter of almost 2 metres and a focal length of 10 metres.[7] In fact, the design was so complex that it took 3 months to negotiate with Zenith, the Krasnodar firm assigned the task of manufacturing it, precisely how the system was to operate. When the design was judged too complex to be built within the specified 18-month period, it was decided to produce a simpler apparatus, which was named Agat (‘Agate’).

The crew would work around the clock. During one shift, two cosmonauts would work while the third rested. One of the two active cosmonauts would work full-time, with the other providing assistance during breaks from the physical exercise regime. They would rotate shifts every 8 hours. One of the serious issues was logistics, not only to sustain the crew but also to operate the camera, which would require a lot of film. In effect, the long-term use of the Almaz was dependent on the cargo capacity of the TKS. In order to maximise the operational life of the station, the docked TKS was to be responsible for controlling the attitude of the orbital complex.

The station and the re-entry vehicle of the TKS were developed at TsKBM under Chelomey’s leadership, and the FGB was designed by Branch No. 1 in Fili, which was often referred to as TsKBM(F).

In fact, this was not Chelomey’s first attempt to develop a spacecraft for manned use. In the mid-1960s he conceived the LK-1 for a circumlunar mission. This was to be a Gemini-shaped spacecraft that would be launched by Proton and carry two cosmonauts on a trajectory around the back of the Moon and straight back to Earth. But Chelomey had seen this merely as a precursor to a programme to beat the

ALMAZ

Two versions of the Almaz station. Left: the original project with the TKS resupply ship showing the station (5); the functional cargo block of the TKS (3); re-entry vehicles (1, TKS and 7, station – original concept only); solar panels (2, TKS and 4, station); and a radio-locator (6). Right: the version that used a Soyuz ferry showing the Soyuz (1); and the station (2). (Copyright Igor Afanasyev)

Americans to a lunar landing. Although during Khrushchov’s time the official effort for this goal was Korolev’s development of the N1 rocket for the programme that became known as N1-L3, Chelomey sought funds for a massive new rocket for his LK-700 programme in which a spacecraft of his own design would make the lunar landing. When the LK-1 was cancelled in a favour of using the Proton to launch the L1 spacecraft designed by Korolev-Mishin, and work on the LK-700 ceased, Almaz became Chelomey’s main project and he incorporated in it all the lessons which he had learned from developing military and scientific satellites, the Proton rocket, and the preliminary design work on the LK-1 and LK-700 projects.

At launch, the mass of the Almaz station was 18.9 tonnes. It was 11.61 metres in length, had a maximum diameter of 4.15 metres, and a usable volume of the order of 90 cubic metres. The hermetic section was in the form of a stepped cylinder, with the crew compartment in ‘front’ of, and adjoining, the wider working compartment. At the rear of the working compartment was an unpressurised section housing the propulsion system, through which ran a small transfer tunnel leading to the passive portion of the docking system.

The crew compartment was 3.8 metres in length and 2.9 metres in diameter. A variety of apparatus was mounted on its exterior, including the antennas for the Igla rendezvous system, solar orientation sensors, a television camera, a laser device and an infrared sensor. At lift-off, this section was protected by an aerodynamic shroud that was jettisoned once the vehicle was above the atmosphere. This compartment had the OD-4 optical port and the POU-II apparatus to take panoramic images with a resolution of 8 metres, the Kolos-5D water tanks and a mechanism to measure the body mass of the weightless cosmonauts. In order to minimise the use of propellant, and thereby maximise the operational life of the station, this compartment housed a system that used electrically driven gyroscopes to control the orientation of the craft. In effect, this compartment was a ‘room’ in which the cosmonauts could take meals,

do physical exercise using a treadmill, perform medical examinations and rest while off duty. There was a small table with a food warmer. Around the table were small chairs and food stores. Above the table were the controls for the station’s guidance system. Beneath the table there were removable panels providing access to medical equipment, medicines, clothes, the cosmonauts’ personal items, a tape player with audiocassettes and a radio receiver.

The narrow cylinder of the crew compartment was attached by a 1.2-metre-long conical frustum to the working compartment. This was 4.15 metres in diameter and 4.1 metres in length, and it contained the station’s primary apparatus. The protective covers for the windows and external equipment were to be discarded in orbit. There were 14 cameras and optical devices. The rear part of the compartment was almost fully occupied by the Agat-1 apparatus and the OPS guidance system. The core of the Agat-1 was an optical telescope for monitoring objects on land, at sea and in the air. It used a telescope in a hermetic conical section that viewed through an aperture in the ‘floor’, with the imagers installed on top, almost at ceiling level. There was equipment to process images, and to enable the crew to study them. Important data could be coded and sent to the Flight Control Centre (TsUP) by the Biryuza radio transmitter, which used antennas located at the rear of the station. If a more detailed analysis was required, the imagery could be returned to Earth by a special capsule that was accessible from the transfer compartment.[8] A cosmonaut could place film and video into it using a mechanical manipulator. Once released, the capsule would automatically perform re-entry and land by parachute. With mass of 360 kg, it could accommodate 120 kg of film or 2 km of recording tape. The transfer compartment also contained two EVA suits, and could be hermetically isolated from the working compartment to serve as an airlock to enable cosmonauts to work outside the station.

The propulsion system had two rocket engines, each of which had a thrust of 400 kilogram-second, four correction engines with a thrust of 40 kilogram-second, and 28 smaller engines with thrusts of 20 kilogram-second and 1.2 kilogram-second to provide respectively ‘rough’ and ‘fine’ control over the station’s stabilisation. Most of the engines were positioned around the axial transfer compartment. An unfolding solar panel was mounted on each side of the transfer compartment. With a total area of 52 square metres, their solar transducers were capable of providing a maximum electrical output of 3.12 kVA.[9]

The intention was to build the entire Almaz system, comprising the Proton rocket, the OPS station and the TKS spacecraft, in the M. V. Khrunichev Machine Building Plant (ZIKh) in Fili, which was then under Chelomey’s control, and to initiate flight operations in 1969. But because the systems were required to operate reliably for up to two years with minimal maintenance this made Almaz extremely sophisticated for its time, and despite their early work on the LK-1 the TsKBM engineers did not have the experience of systems for manned spacecraft that had been gained by their

TsKBEM rivals. As a result, the programme soon fell behind schedule, making the first operational flight in 1969 impracticable. Although by 1970 the cores of ten stations had been assembled – eight for testing and training, and two for flight – the real challenge for Chelomey’s designers was the TKS spacecraft.

In the meantime, in September 1966 the ‘Almaz Group’ of military cosmonauts started to train at the Cosmonaut Training Centre (TsPK) in Zvyozdniy Gorodok (Star Town) near Moscow to operate the first Soviet space station. By the end of 1971 there were 28 cosmonauts in training for Almaz, making this the largest group ever formed for one space programme.

THE NIGHT RETURN

Shatalov and Yeliseyev spent their second night in space snoozing, but their rookie colleague, Rukavishnikov, remained awake, watching the Earth and taking pictures. In fact, he had a criticism of the spacecraft: “At a temperature of 20 degrees it is impossible to sleep in the flight suits. It is very cold. During the first night we slept only two or three hours. Instead of sleeping, we sat and shivered! It is necessary to carry sleeping bags.” He was disappointed by the failure of their mission. Instead of setting a new record of 30 days in space, the flight would last just 48 hours! How long would he have to wait to receive another opportunity to fly?

On the original plan, the landing after a 30-day flight would have been in daylight – it was this timing which had required the launch to occur at night. To return after two days meant landing in darkness, which was something that the authorities had always avoided. After examining the options, it was decided to make the descent at the first opportunity on 25 April, aiming to return to a site 80-100 km northwest of Karaganda, a town on the Kazakh steppe. Normally, a Soyuz would automatically orientate itself to perform the de-orbit manoeuvre, but on this occasion Shatalov was told to do this manually – although since it would be dark outside he would have to fly ‘on instruments’. In case of a problem that prevented the planned manoeuvre, the TsUP investigated the possibility of making it in daylight and landing in Australia, South America or Africa.

Shatalov aligned Soyuz 10 as specified. In normal circumstances, the cosmonauts would be able to make visual checks to verify the orientation, but outside was pitch black – there was not even moonlight to show the position of the Earth. They would be completely at the mercy of the automated systems. At 01.59 a. m. on 25 April the main engine was ignited to start the lengthy de-orbit burn. As the descent sequence was automated, the crew were passengers. After the engine shut down, pyrotechnic charges were fired to jettison both the propulsion module and the orbital module, and Rukavishnikov said that he had seen the flashes. The crew could only hope that the descent module was aligned with its heat shield facing in the direction of travel. As the module penetrated the upper reaches of the atmosphere, it was enveloped in a shockwave of glowing plasma. It was like being inside a neon tube whose colours changed. This awesome sight had been denied to their predecessors who returned in daylight!

Even the veteran Shatalov was astonished:

As the ablative coating of the ship burns off we can see a real fire around us. To an outside viewer our descent module would have looked like a meteor. The g – forces are increasing. Our breathing is difficult. Around us something is crunching, and the module is shaking. Through the windows we can see a dance of orange and red sparks. The impression is much more dramatic than during a daylight descent. Finally the plasma fades, and a few minutes later the three parachutes deploy: first the pilot chute, then the drogue and finally the main. It was again darkness outside the windows. At an altitude of 5,000 metres we saw the first detail of the surface. Aleksey and Nikolay, who had windows on opposite sides of the cabin, both reported seeing a lake below. We would prefer not to land in the water. When Aleksey again looked out, he shouted “Land!” – just like the lookout of Columbus’s sailing ship. Next we heard the soft-landing rockets fire, there was a shock and then – nothing. As there was no motion, we knew that we had landed on soil. Excellent! We shook hands and congratulated ourselves on having made a successful return. Just after we reported by radio that we were down and packed the flight log, we heard knocking on the wall – the recovery team had arrived. Despite the conditions, they had done their job perfectly. They had spotted us during our parachute descent, and as soon as we landed their helicopters had set down alongside.

The landing occurred at 2.40 a. m. on Sunday, 25 April, about 120 km northwest of Karaganda. When it was realised that the descent module might splash into a lake some of the recovery team had donned aqualungs in preparation to jump from the helicopter into the water to attend to the capsule. But then a gust of wind carried it on shore, and it landed 42 metres from the water’s edge. Often a capsule would land on its side, but this time it settled in the preferred upright position – as indeed it had for Shatalov and Yeliseyev’s previous landings. This first descent in darkness concluded the shortest Soviet space flight for six years.

Shatalov knew before this flight that Soyuz 10 would be his last space mission, as he had promised to accept an appointment to replace Kamanin. In addition, when Soyuz 10 landed Yeliseyev decided not to seek another opportunity to fly in space:

We landed on the shore of a small lake. The helicopter was already circling, awaiting us. The recovery group included three very restrained and taciturn fellows wearing scuba-diving suits. We felt that these were courageous and disciplined people on whom we could rely. . . . As I stood beside the descent module I thought: What next? Should I make one more flight to end this run of failures? … No.

Several minutes after the landing, the TsUP received a call from one of the rescue helicopters reporting that the cosmonauts were in good health. Finally, the people at the control centre were able to relax. Despite the failure of the main task, everyone was delighted at the completion of this short but tricky flight. However, the Kremlin

The night return 109

Despite their inability to dock with Salyut, the Soyuz 10 crew received medals on a visit to the Kremlin. Standing alongside the cosmonauts are Premier Kosygin and General Secretary Brezhnyev. Ustinov (in profile) is behind Brezhnyev. The mood appears to be rather sombre.

was dissatisfied. On Soyuz 8 the Igla rendezvous system had failed. Although it had worked on this occasion, and Shatalov had steered his ship in to make contact with the station, a fault had interrupted the docking process. This was not good enough! But it was not the fault of the crew, and on their return to Moscow Rukavishnikov received a Gold Star as a Hero of the Soviet Union. His veteran colleagues already had two such awards for their previous missions.

TASS announced the landing without saying why Soyuz 10 had returned so soon. Officially, the crew had fulfilled their assignment. The mission was “a stage in the general programme of work” associated with Salyut. As TASS explained afterwards: “The programme of scientific-technical studies has been fulfilled.” That is: “Studies directed at checking the efficiency of perfected systems for the mutual search, long distance approach, berthing, docking and separation of the ship and the station were carried out.” For years, therefore, Soyuz 10 was classified as a successful test flight whose objectives had simply been to test the new docking system and to assess how the two vehicles behaved in a joined configuration. The cosmonauts were forbidden to state otherwise. At a press conference broadcast by Moscow Radio on 26 April, Shatalov said the flight was “not extensive in duration, but tense and magnificent in its tasks”. He repeated what he had said prior to launch, that the flight represented a stage in a programme to develop orbital research stations. He said: “perfecting new systems for sighting, approaching and docking with an unmanned station were the mission’s most important tasks”, and

“all these tasks were carried out completely”. Even when Shatalov wrote his autobiography, The Hard Roads to Space, which was published seven years later in the typical Soviet style, he said nothing to imply that his third and final space mission had been anything less than a complete success.

At the press conference Yeliseyev was asked to describe Salyut: “The station is indescribably beautiful. A most impressive piece of equipment with a huge quantity of instruments, all kinds of antennas, a docking system, and ‘СССР’ written on its side in large letters.[39] The station was gleaming white, and equipped with a flashing beacon to aid us in our approach.’’ Shatalov added: ‘‘Salyut is so heavy that on Earth powerful cranes had difficulty in turning it.’’

Apart from the crew of Soyuz 10, few people were permitted to talk to journalists about the mission. One such person was Konstantin Feoktistov, one of the station’s designers, who stuck to the official line that the objective of the mission had been to test the docking system: ‘‘The docking of a relatively small transport spaceship with a large orbiting laboratory proved to be more difficult than docking vehicles of the same size.’’ He said that a new type of docking unit was tested – which was true. In the course of the manoeuvres, Soyuz 10 changed its orbit on three occasions and the station did so four times. Rukavishnikov had conducted ‘‘a series of important tests and technical experiments’’ during the docking – which was certainly true, although Feoktistov did not explain what these ‘‘tests’’ involved and why they were necessary. And he repeated the line that it was never intended that the cosmonauts should enter the station.

Some Western observers speculated that Soyuz 10 had landed after just two days because Rukavishnikov had developed ‘space sickness’. The story was that a severe case of vertigo had prevented him from going into the voluminous station. Veteran cosmonaut and space physician Dr. Boris Yegorov was quoted as saying that during one communication session Rukavishnikov told ground control he had experienced ‘‘unusual and rather unpleasant feelings’’ as a result of the increased blood flow to his head – which was undoubtedly true, because this is a consequence of entering a weightless state. Yegorov was also quoted as saying that this crew had to cope with ‘‘a considerable emotional load’’ – which was also true, given the problems that they faced, although the fact that there were problems was a secret. When a Guardian correspondent asked Rukavishnikov how he felt in space, he replied: ‘‘A lot better than I’d expected in advance! On the first day I felt good, ate and worked normally. The next day I ceased to notice weightlessness. For me, working in weightlessness was pleasurable and joyful – for example, it was possible to catch an object in the air.’’ Shatalov confirmed that Rukavishnikov’s status had been good throughout the flight: ‘‘I think he felt even better than Yeliseyev and I.’’ And this was confirmed by the in-flight biomedical telemetry: at the vital moments Rukavishnikov’s heart rate was lower than for his more experienced colleagues. So much for the story that he had fallen ill and caused the mission to be cut short!

“Show me that designer” 111

OKB-l’S SPACE STATIONS

Owing to the protracted delays with the design and development of the TKS, it was decided to start Almaz operations using the Soyuz spacecraft as a crew ferry. The manner in which this decision was made is interesting. When the Almaz programme began in 1964, OKB-1 was involved in so many projects that it was overcommitted. In addition to adapting the Vostok capsule for the Voskhod missions, developing lunar and interplanetary probes, and developing several versions of the new Soyuz spacecraft – including the Soyuz-P and Soyuz-R for military missions – Korolev’s designers were developing the N1 launch vehicle. When the Americans announced their intention to develop the MOL, Korolev transferred the military Soyuz projects to OKB-1’s Branch No. 3 in Kybishev (now Samara), which had developed the R-7 missile that was used to launch the early Sputniks and, with an additional stage, the Vostok spacecraft. Chief Designer Dmitriy Kozlov, who had led Branch No. 3 since 1959, eagerly accepted the transferred projects. The objective of the Soyuz-P was to rendezvous with an American military satellite in order to inspect and, if required, destroy it.[10] However, it was decided that to have a crew fly such a mission would be too risky, and in 1965 the project was cancelled in a favour of an unmanned satellite interceptor (IS) proposed by Chelomey.

This left Branch No. 3 of OKB-1 with only the Soyuz-R.[11] For our story, this is an important project since it was actually the first space station ever to be endorsed by the Soviet government – although admittedly it was of modest scope in comparison to Almaz. The order was signed by Defence Minister Marshal Rodion Malinovskiy on 18 June 1964, six months after the announcement by the Americans of their intention to develop the MOL, and it was included in the 5-year development plan drawn up for the Soviet military space programme covering the period 1964 to 1969. Representatives of the Ministry of Defence, MOM and the Academy of Sciences conducted a major technical and scientific assessment of the project in early 1965, and accepted that it was viable. The mission was to involve two separately launched unmanned spacecraft, both of which were based on the Soyuz design. Once docked,

OKB-l’S SPACE STATIONS

Dmitriy Kozlov (centre), the Chief Designer of Branch No. 3 of TsKBEM in Kybishev (now Samara).

they would form a small space station with total mass of 13 tonnes, a length of 15 metres and a habitable volume of about 31 cubic metres. In documents drawn up by OKB-1 Branch No. 3, this two-part facility had the technical code 11F71. A third Soyuz (11F72) would be launched with two cosmonauts. After docking, they would move into the station through a hermetic transfer tunnel to pursue a programme of military observations and experiments. In December 1965 Kozlov visited General Nikolay Kamanin who as Deputy Chief of the Soviet Air Force was in charge of the manned space programme to develop a joint plan to make use of the Soyuz-R station, for which military cosmonauts were already in training at the TsPK.

However, when the Americans began to fly Gemini missions in 1965 the Kremlin, fearful that this spacecraft would be used to conduct satellite interceptions, realised that even if the work at OKB-1 and OKB-52 progressed as planned, their respective spacecraft would not become available until 1968. In August 1965, therefore, the Kremlin ordered Kozlov to urgently develop a new military spacecraft which would be able to be introduced before the end of 1966.[12] [13] The project was named ‘Zvezda’ (‘Star’), but was also known as the Soyuz-VI.11 So, having lost the Soyuz-P, Kozlov once again had two manned spacecraft for military use.

The Soviet space programme suffered a setback in January 1966 when Korolev died. The Science and Technical Committee of the Ministry of Defence conducted a detailed review of the two long-term military projects, and decided to terminate the Soyuz-R. The 11F71 code was reassigned to Almaz. Then, reluctant to wait for Chelomey’s TKS, the committee recommended using the 11F72 Soyuz that Kozlov was developing to ferry crews to the Soyuz-R station. At this point it is necessary to explain that the general designation for Soyuz spacecraft was 7K, with the Soyuz-P being 7K-P, the Soyuz-R being 7K-R, the Soyuz-VI being 7K-VI, and the 11F72 variant being 7K-TK.[14] Kozlov was told to give the technical documentation for the Soyuz-R station to Chelomey to enable the Almaz to be modified to accommodate its ferry craft. The 7K-TK would deliver crews to the Almaz stations until the more capable TKS became available. This made Almaz the first case of a major Soviet manned space programme to integrate work by highly competitive design bureaus. But establishing the necessary coordination of the two teams in order to revise the Almaz design to use the much smaller Soyuz as a crew ferry took time, and in late 1966 the Military-Industrial Commission (VPK), which was an institution created by the Council of Ministers to implement the decisions of Communist Party, issued decree No. 304 accepting the delay in the development of the Soyuz crew ferry for Almaz and calling for tests of Almaz systems in 1968 and the first operational flight in 1969. Hence, by 1967, after much political manoeuvring by politicians, generals and chief designers, Almaz had become the principal Soviet military manned space programme, and the nation’s only space station project.

Nevertheless, the Zvezda reconnaissance spacecraft was still under development by Kozlov. After a series of technical problems during the unmanned test flights of the Soyuz, Kozlov directed his engineers to change the configuration for Zvezda. In particular, it was to have a crew of two cosmonauts who would wear pressure suits, whereas the Soyuz was to have a crew of three who would not wear pressure suits – the precedent for this decision by Korolev being the three-man Voskhod mission in 1964. At launch the Zvezda spacecraft would weigh 6.6 tonnes, be 8 metres in length, 2.8 metres in diameter and have a volume of 12 cubic metres. The total mass of a man, his pressure suit, couch and life support system was approximately 400 kg. Early in the development of the Zvezda project it was expected that the capacity of the Soyuz rocket would restrict the spacecraft to a single cosmonaut, but continued redesign of the descent module enabled a second couch to be installed. The Zvezda spacecraft was to be capable of a 1-month mission, which was twice the maximum duration of the American Gemini.

An interesting difference in design between the Soyuz and Zvezda spacecraft was the descent module. In the case of the Soyuz, this was located in line between the orbital module (in front) and the propulsion module (behind). The descent module is actually a command module, with the couches on its broad base facing an array of controls and instrument panels. This arrangement severely limited the visibility. The

spherical orbital module blocked the view directly ahead. Sitting in the centre couch, the commander had only a 15-degree-wide periscope for rendezvous and docking operations. The cosmonauts seated left and right had side-facing windows, but were unable to see the target vehicle. As Zvezda was not required to dock with a satellite, Kozlov optimised visibility to enable the crew to conduct a visual inspection of the target. In particular, he moved the descent module to the forward end of the vehicle and inserted the orbital module between it and the propulsion module. Although this arrangement had obvious advantages in comparison to the Soyuz, the design had the important disadvantage that the access hatch to the orbital module was through the heat shield of the descent module, and there was some concern that the hatch would not withstand the thermal stress of re-entry.[15] Although dynamic tests conducted at Branch No. 3 of OKB-1 showed that the hatch was safe, there were lingering doubts. Another issue was Zvezda’s power system. Instead of using either chemical storage batteries or solar panels, it was to have a pair of radioisotope thermal generators that would use thermocouples to transform radiogenic heat into electricity. Although these were to be located at the rear of the propulsion module, the potential exposure of the crew to radiation from this system was a matter of some concern. Finally, in view of the fact that the mission was overtly military, a rapid-firing Nudelyman gun was added for protection from an American satellite – killer.[16]’[17] The entire spacecraft, with its gun, entered ground testing in 1967 and, despite the safety concerns, in late July the Central Committee and Council of Ministers endorsed Zvezda with the first launch being scheduled in 1968 as a prelude to in-orbit military operations in 1969.

In the meantime six military cosmonauts began to train at the TsPK in September 1966 for the Zvezda programme. They were later joined by two new cosmonauts. The group was led by veteran cosmonaut Pavel Popovich. The first two potential crews were soon selected. However, the project was derailed in October 1967 when Vasiliy Mishin, now Chief Designer of the TsKBEM and Kozlov’s boss, intervened. The root of the issue was that Mishin took exception to the degree of independence that Korolev had given Kozlov. By machinations and political intrigues exploiting his MOM and VPK contacts, in January 1968 Mishin, with the support of Minister Afanasyev, directed Kozlov to cancel Zvezda. When General Kamanin heard of this he supported Kozlov, but was unable to have the cancellation order reversed.

As a substitute for Zvezda, Mishin suggested the Orbital Research Station (OIS) Soyuz-VI (11F730), and in May 1968 sent a technical specification to the Ministry of Defence. It was based on the Soyuz-R, would fly at an altitude of 250 km at an inclination of 51.6 degrees to the equator, and have solar panels for power and a passive docking system incorporating a hermetic tunnel. The crew would arrive in a

Soyuz 7K-S (11F732)[18] and spend typically a month on board using about 1,000 kg of equipment supplied by the Academy of Sciences and the Ministry of Defence. In addition, the plan called for an unmanned cargo craft 7K-SG (11F735) to supply the occupied station with food, water, air and additional equipment.[19]’[20] Kozlov was not excluded – Branch No. 3 of the TsKBEM joined this project in June 1968, but in a subsidiary rather than a leading role.

However, at that time the TsKBEM was fully committed both to redesigning the Soyuz following the loss of Vladimir Komarov on its first manned mission, and to the development of the L1 and L3 lunar programmes. The low priority assigned to the OIS is indicated by the fact that the TsPK never even received a simulator for it, and when the Zvezda cosmonauts were transferred to the OIS they were given only theoretical, physical and survival training. By the end of 1969 it had been decided to start a much more ambitious project, and in February 1970 Afanasyev cancelled the OIS and the cosmonauts were reassigned to the Almaz space station.

There were also considerably more ambitious space stations projects initiated by OKB-1/TsKBEM. Notably, in Korolev’s time there was the Multirole Space Base Station (MKBS) that was to be launched by the N1 rocket. Work on this station had to be halted, awaiting the introduction of the giant rocket. When the N1 tests finally began in early 1969, Mishin appointed Vitaliy Bezverby, an expert in the ballistics of space vehicles, to manage the MKBS project. The core of the station was to be a cylinder 20 metres in length and 6 metres in diameter. Some 60 metres away, and connected by three long supports, there was to be a nuclear power unit and a plasma electric engine, increasing the length to 100 metres. The total mass of between 220

OKB-l’S SPACE STATIONS

Early planned Soyuz variants: the Earth orbital version (left), Soyuz-P, Soyuz-R space station, Zvezda, and Soyuz-VI miniature space station. (Courtesy Mark Wade)

and 250 tonnes was to have included 80-88 tonnes of modules and 15-20 tonnes of scientific equipment. It would operate at an altitude in the range 400-450 km and at inclinations of either 51.6 or 91 degrees – the latter being a polar orbit which would enable it to survey the entire globe on a daily basis. It was to have a main crew of six cosmonauts, and an operational life of at least a decade. Two modules providing a volume of 30 cubic metres were to be spun in the manner of a centrifuge to simulate a gravity of 0.8 g. The 200-kW output of the nuclear power unit was to be supplemented by 14 kW from solar panels having a total area of 140 square metres. The station was to have eight docking ports to enable it to serve as a ‘space port’ for a variety of types of spacecraft, some of which would be unmanned – after being serviced by the station’s crew, an unmanned spacecraft would depart to conduct an automated programme of military reconnaissance. The MKBS was to be equipped to protect itself. In fact, its design included numerous concepts similar to those that were envisaged for the ‘Star Wars’ programme which was initiated in the 1980s by President Ronald Reagan. Although the MKBS remained a paper study, many years later some of its elements were included in the design of the Mir space station.

In all the time that the TsKBEM was concentrating on the redesign of the Soyuz, the L1 project and the development of the N1-L3, Chelomey progressively worked to reduce the degree to which Almaz was dependent on Mishin’s bureau. In 1969 he rejected the Soyuz 7K-TK as the crew ferry in favour of the TKS, which was being developed under the leadership of Yakov Nodelyman. By the time the draft design was completed in 1969, the TKS had grown in length to 13 metres, had a volume of 50 cubic metres and a mass of almost 22 tonnes – making it heavier than the Almaz station itself! Although eager to be free of the TsKBEM, Chelomey borrowed some aspects of the Zvezda spacecraft; in particular modifying a quick-firing Nudelyman – Richter NR-23 cannon used by the Tu-22 bomber.[21] This had a maximum range of

OKB-l’S SPACE STATIONS

The giant MKBS space station designed by the TsKBEM, showing four Soyuz type spacecraft docked at the main compartment (far right), an artificial-gravity module at each end of the perpendicular boom, and a nuclear power module supported by three long pylons. (Courtesy Mark Wade)

3 km, fired 0.2-kg projectiles at a speed of 690 metres per second and had a rate of 950 rounds per minute. Since the gun would be in a fixed position, it would be necessary to align the station to aim the gun at a target, and the correction engines were to maintain the station’s stability while the gun was firing. It was expected that the gun would be able to hit and destroy a target within five seconds.

The great irony was that while the Soviet Union was working on all these military projects, the development of the American MOL had fallen behind schedule, and in 1969 this suffered the same fate as the Dyna-Soar ‘space plane’ by being cancelled shortly before its preliminary test flight. Nevertheless, the Americans had not given up on the idea of a space station.