Category China in Space

ONTO A PERMANENT SPACE STATION

Tiangong was China’s first space laboratory. The Chinese explained that there would be a second occupation of Tiangong, after which the laboratory would be de-orbited in the Southern Ocean, away from the shipping lanes. Its thrusters would fire for long enough to take it out of orbit: most of it would bum up but any fragments that made it through re-entry would impact harmlessly. Tiangong would be followed over the next five years by Tiangong 2 with 20-day visits and then Tiangong 3 with 40- day visits and a regenerative life-support system [4]. Tiangong 3 would be resupplied by an unmanned cargo craft based on Shenzhou, in the same way as Russia adapted Soyuz as the Progress cargo vehicle. This third station would orbit up to 450 km and would spend up to 10 years in orbit.

At 12 days’ duration, Shenzhou 9 doubled the length of the previous longest Chinese spaceflight. Although other countries, especially Russia, had made long – duration missions for many years (one cosmonaut spent 438 days in orbit), China lacked its own database on the effects of weightlessness. In anticipation, ground tests had been carried out, the focus being on bed-rest and head-down tilt experiments to simulate some of the effects of weightlessness. A 60-day bed-rest and head-down tilt experiment was carried out in 2007 in a three-sided project between the astronaut training center, the French space agency CNES, and the Chinese University of Hong Kong. Twenty-one men participated, the effects being lower cardiac activity accompanied by a loss of bone density and muscle mass. Countermeasures were developed during a 30-day bed-rest and head-down tilt experiment with 14 men in 2009 during the course of which they exercised with a bicycle, wore penguin suits,

ONTO A PERMANENT SPACE STATIONand used negative pressure equipment, with positive results. Separately, using rats, experiments were conducted using traditional Chinese medicines, especially taikong xiele to slow bone and muscle loss [5].

As the design and building of Tiangong proceeded, China began work on a permanent station, something on the lines of the Soviet Mir space station. In the early 2000s, China issued illustrations of a station comprising a core block and three 8.5-tonne Tiangong-class modules, totaling 38 tonnes, with a permanent crew of three. This model was quite similar to the original design of the Mir space station, but much smaller than Mir in its final form (120 tonnes), still less the ISS (450 tonnes). The core block would be launched from a new launch site on Hainan Island in 2020, with Tiangong modules, manned Shenzhou spacecraft, and unmanned freighters flying up from Jiuquan. The station would orbit between 400 and 450 km, 42°, for 10 years. From time to time, the station would dip to 380 km, to facilitate the arrival of Shenzhou spacecraft. It would then be boosted back to altitude; 2023, the solar maximum, would be a trying year, for increased atmospheric density would require numerous orbit-raising maneuvers.

The design of the space station was modified in 2011 to become something more ambitious. New designs issued by the office of China Manned Spaceflight Engineering showed something much more on the scale of the ISS. First up would be the base block with a six-port node and robotic arm, followed by a small module

Table 1.2. Scientific platforms planned for large Chinese space station, 2020.

• Space Exposure Experimental Platform, with robot arm, for experiments in radiation biology, materials science, new components and materials, astronomy, space physics, and environment;

• Variable Gravity Experimental Platform, providing opportunities for experiments in biology, complex fluids, material science, and medicines from 0 to 2 G;

• High Temperature and Combustion Science Experimental Platform;

• High Microgravity Level Experimental Platform, for experiments in laser cooling atomic clocks, the verification of gravity, the equivalence principle, crystals, fluid science, laser and optical diagnostics, and colloidal crystals;

• Life and Ecology Experimental Platform, a greenhouse for cell and tissue cultivation, to cultivate plants, raise animals, and to test the disposal of waste gases and water;

• Protein Engineering Experimental Platform, for experiments with protein macromole­cules, liquid and gas diffusion, protein structures, and functions.

with solar panels, not unlike the Kvant module on Mir. The first occupation by a Shenzhou crew would take place next, with resupplies by unmanned cargo craft. Next would come a truss structure on which four huge solar panels would be attached. Four large laboratory modules would follow. There would be an airlock module from which numerous space walks would be based. A notable feature of the plan was that large solar panels would be added at the earhest possible stage, so that there would be sufficient power for the specialized modules.

As for the scientific experiments to be carried out in 2008, the Chinese Academy of Sciences had begun work on China’s scientific goals, subsequently published as Roadmap 2050 [6]. This outlined six science “platforms” to be installed on the station, comprising the instrumentation for the specialized modules. These are listed in Table 1.2.

An early priority was what was called the “cosmic lighthouse”, a 3-tonne external platform to survey the sky for dark matter and dark energy. Seven candidate projects were under consideration:

• large-scale imaging and spectroscopic survey facility, to study dark energy, dark matter, and the large-scale structure of the universe;

• high-energy cosmic radiation facility, to study the properties of dark matter, the composition of cosmic rays, high-energy electrons, and gamma rays;

• soft x-ray and ultra-violet all-sky monitor to study x-ray binaries, super­novae, gamma ray bursts, active galactic nuclei, and the tidal disruption of stars by supermassive black holes;

• x-ray polarimeter, to study black holes, neutron stars, accretion disks, and supernova remnants;

• galactic warm-hot gas spectroscopic mapper, to study the Milky Way, interstellar medium, and missing baryons in the universe;

• high-sensitivity solar high-energy detector, to study solar flares, high-energy particle acceleration mechanisms, and space weather; and

• infrared spectroscopic survey telescope, to study stars, galaxies, and active galactic nuclei.

Additional experiments were planned in optical and electron microscopy, diffractive and florescent analysis, mass spectrometry, confocal laser scanning microscopy, and interferometry. As for the yuhangyuan themselves, a range of experiments were planned in:

• psychology of crew and individual performance in an isolated, confined, and hostile environment;

• first aid, space sickness, immunity, and telemedicine;

• physical resistance to weightlessness, addressing bone loss, atrophy, and cardiovascular deconditioning;

• resistance to radiation hazards, cancers, gene mutations, and pharmacolo­gical protectors;

• Controlled Ecological Life Support Systems: food production, the balance of oxygen and nitrogen, the recycling and regeneration of water;

• fire safety – prevention, detection, control, and suppression.

Even as Tiangong was circling the Earth, China began work on the construction of the elements of this permanent station. First of all, a 12-m-tall, 7-m-diameter component-testing facility was built. One of the first items to be tested was a remote arm, for girders and remote arms had proved an important feature of the Mir space station. Harbin Polytechnical University, with Beijing Robot Research Centre, obtained funding under a horizontal research program called 863 for the development of a remote arm for the space station. It was much smaller than comparable Russian or Canadian projects, being of human size, with 96 sensors, 12 motors, four fingers each with four joints, and the ability to lift 10 kg. It could use screwdriver and spanner-type instruments and, according to its inventors, could even play the piano!

These designs and plans set the scene for an ambitious program of manned space exploration. But key to their ultimate success was the first-ever laboratory: Tiangong in 2012. The three missions are summarized in Table 1.3 and the chronology of the space station is shown in Table 1.4.

Table 1.3. Tiangong missions.

Mission

Date

Tiangong 1

29 September 2011

Shenzhou 8

31 October 2011

Shenzhou 9

16 June 2012

References 27

Table 1.4. Chinese space station: chronology.

Year Event

1992 Russian-American agreement on ISS

1998 Start of construction of ISS

1999 Government approval of space station project; first designs

2000 Cooperation agreement between China and Russia extended to space stations

2011 Launch of Tiangong; rendezvous and docking by Shenzhou 8

2012 First occupation of Chinese space station by crew of Shenzhou 9 [2] [3]

LAUNCHERS

China has developed two families of launchers – the Long March, known as the Chang Zheng (CZ), and the Feng Bao (FB, or Storm). The Long March family is divided into seven series – Long March 1, 2, 3, and 4, which have flown, with 5-7 forthcoming (these future launchers will be considered in Chapter 10). The Feng Bao launcher was used from 1971 to 1981 for the JSSW series and Shi Jian 2 (see Chapters 2 and 7), when it ended service and is not considered here; neither is the Long March 1, used for the first two launches, but not subsequently. The Chinese are visually helpful in enabling us to identify their rocket launchers, for their white – painted rockets invariably have the launcher type painted in big red letters in large English script on the side after the Chinese pictograms for “China” and “Hangtian”, the latter meaning “space” or “cosmos” in Chinese.

Although, to an outsider, all rockets, being rocket-shaped, appear to have the same means of propulsion, in fact there are many important distinctions between them. First, rockets may use either solid fuel or liquid fuel. Solid-fuel rockets operate on the same principle as fireworks. A gray sludge-like chemical is poured into a rocket container. When the nozzle is fired, the stage bums to exhaustion. Solid rockets are very powerful. Their main disadvantage is that they cannot be turned off – they simply burn out. They are less precise and less safe.

Liquid-fuel rockets are more complex. They have two tanks – a fuel tank and an oxidizer. Both are pressurized and fuel is injected, at great pressure, into a rocket engine where it is ignited. On liquid-fuel engines, the level of thrust may be varied (throttled) and the engine may be turned off and restarted. This system is complex but more versatile and, from a manned-spaceflight perspective, safer. Liquid-fuel rockets may be divided into three sub-categories, according to the type of fuel used. Most Russian and American civil rockets have used kerosene (a form of paraffin) as a fuel. These are powerful fuels, but they degrade if they are kept in a rocket for more than a few hours at a time. If a launching is missed, the fuels have to be drained and reloaded – a tedious and time-consuming process. From the 1960s, Russian and American military rockets began to use storable propellants, generally based around nitric acid or nitrogen tetroxide and UDMH (unsymetrical dimethyl hydrazine). The

advantage of storable propellants is that they can be kept at room temperature in rockets for long periods before they are fired – a necessity when military rockets must be kept in a constant state of readiness. The disadvantage is that such fuels are highly toxic, presenting hazards for launch crews and horrific consequences in an explosion. In 1960, a Soviet R-16 missile exploded at Baikonour cosmodrome. Ninety-seven engineers, supervisors, and rocket troops died in the ensuing fireball, but the level of casualties was made much worse by the toxic nature of the exploding fuel. It remains the worst rocket disaster in history. Finally, there is the use of liquid hydrogen as a fuel. Liquid hydrogen is enormously powerful, but has to be kept at extremely low temperatures. China has favored the use of storable propellants for main stages, with small solid-rocket boosters for the final kick to 24-hr orbit. The Chinese introduced a hydrogen-fuelled upper stage with the Long March 3 in 1984.

Now follows a description of each of China’s main launcher families. As with many aspects of the Chinese space program, this compilation is a hazardous exercise. Precise technical details of Chinese rockets vary slightly from one publication to another. Designators vary even more, especially when it comes to rocket engines.

Type

Successful launches

FB

4

CZ-1

2

CZ-2C

35

CZ-2D

16

CZ-2E

5

CZ-2F

10

CZ-3

13

CZ-3A

24

CZ-3B

18

CZ-3C

8

CZ-4A

2

CZ-4B

20

CZ-4C

6

Successful launches to orbit to 30 June 2012.

For example, the YF-20 engine when clustered as a first-stage engine is called the YF-21; when used as a second-stage engine, it is called the YF-22, but when linked to YF-23 vernier engines, it is called the YF-24! Table 3.3 shows launches by launcher type.

Communications satellites

Communications satellites are an important line of development of the Chinese space program. In 1984, China launched its first communications satellite – the beginning of a series that has brought television and modern communications to the whole Chinese landmass. This began the Dong Fang Hong series of communications satellites, now at Dong Fang Hong 4, with numerous derivatives (e. g. Feng Huo, Tian Lian). China attempted to open its space program to launching Western satellites, but this became the occasion of a prolonged and acrimonious stand-off with the United States which continues to the present day. Despite this, China has launched several comsats for foreign customers, like Nigeria and Venezuela, with more to follow.

OCEANS: HAIYANG

Zi Yuan, Huanjing, Tansuo, and Tianhui focused on land masses. In the meantime, China had been working on a series of satelhtes devoted to maritime observations. These would require a quite different set of instruments. The potential of maritime observations had been well known ever since the American Seasat, the Franco – American Topex/Poseidon and Jason, and the Russian Okean. Theoretical work had been undertaken in China in the 1970s. The concept was especially promoted by Jiang Jing Shan, who had seen the other examples and managed to obtain project 863 funding in the 1980s. The program was eventually approved in 1997 [14]. It was developed for the Science and Technology Department of the State Oceanic Administration and planned as the first of a series of regular launchings of observation satellites able to photograph the ocean in three-dimensional color images. The aim of the series was to monitor the seas, tidal zones, offshore sandbanks, and the marine environment, picking out pollutants and sand pouring into the sea. In particular, it would focus on China’s coastal seas (Bohai, Huanghai, Donghai, and Naihai).

The first satellite, Haiyang 1 (later called Haiyang 1A), the Chinese word for “ocean”, was brought into orbit on 15th May 2002 as a companion of Feng Yun 1-4 (see above). Haiyang was a small (1.2 x 1.1 x 1-m), 365-kg oceanographic satelhte using the CAST968 bus. The original orbit with Feng Yun 1 was not suitable for Haiyang so, during the last week of May, a motor lowered Haiyang’s altitude to an operational height of 792-795 km, 100.7 min.

Haiyang had a 10-band three-dimensional ocean color and temperature mechanical scanner made in Shanghai with a swath of 1,164 km, resolution of 1,100 m, a revisit time of three days, and a four-band push-broom Charge Couple Device CCD camera made in Beijing of 500-km swath with 250-m resolution and a seven-day revisit time. The aim was to observe the oceans for chlorophyll,
plankton, fluorescence, sediment, temperature, ice and pollution, chlor­ophyll concentrations, surface tem­peratures, silting, pollutants, sea ice, ocean currents, and aerosols. It crossed China from 08:35 to 10:40 every morning, making observations while downloading data from the 2­GB memory tape recorder over a 22­min period at 5 MB/sec [15].

The original program envisaged a test satelhte with a two-year lifetime

(IA) before an operational satellite

(IB) . The satelhte was a success and relayed back high-quality images, from the Strait of Qongzhou to Mexico Bay. Haiyang 1 focused on the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, operating for 685 days to April 2004, making 830 surveys. Four problems were revealed by this test mission. First, its solar cells did not last as long as hoped. Second, the Chinese were not happy with the level of glinting of the Sun on the ocean’s surface and set the equator crossing time back from 10:00 am to 10:30 am to get a better angle on the next satellite. Third, memory was insufficient, so the next satellite was equipped to download not one, but five sets of data during each overpass. Fourth, the swath was too narrow and

Haiyang, China’s pioneering oceanographic was increased to 3,000 km. satelhte. The operational Haiyang IB was

duly launched on 11th April 2007, with a three-year lifetime, three times greater data capacity, higher resolution, greater tolerance to temperature and vibration, 10 computers, and improved solar cells. Its mission was to monitor the temperature of the ocean, track pollution, watch coastal development, and study environmental changes. It flew at 798 km, with weekly repeater orbits.

Like Huanjing, we have a good volume of information on the Haiyang program. Color sea temperature maps were published, such as an average sea temperature map for the Pacific north-west, ice levels and thickness in the Bohai Sea (which freezes for three months every winter), and river sediments entering the oceans. Maps of the

intersections of warm and cold waters have indicated where fish Uke mackerel, squid, and scad may be found. Hiyang made it possible to make estimates of the biological productivity of the ocean, a vital component in the carbon cycle – a slow and tedious process to undertake from ships – presenting not just maps of the seas around China, but a global productivity estimate. Estimates were made of the carbon dioxide partial pressure in the Yellow Sea so as to begin a model for the ocean carbon cycle. Wind and wave maps of the seas between the Philippines and Indo-China were published. Detailed maps were published of both green tide and red tide infestations, both of which had the potential to damage the marine environment, fishing, and tourism (the 2008 green tide affected the Olympics regatta in Qingdao). Sea ice updates were provided. Color maps were published of suspended sediment in the sea around costal zones. The Haiyangs were able to collect data that measured the level of phytoplankton, benthic plants, and autotrophic bacteria in the seas – indicators of the biological productivity of the ocean. The strength of winds and typhoons was measured and wave heights were calculated to 6 cm. Such information would have been infinitely slower and more costly to obtain from sea-based monitoring. In April 2012, it was announced that Haiyang data would soon be available on the internet from the country’s oceanographic administration, presumably on a system like that of CBERS.

Haiyang marked an important advance in remote sensing for China but, according to the program leaders, Jiang Xingwei and Lin Mingsen, China still lagged behind other countries. There was still much to be done to improve accuracy and extend the application of the data [14]. A three-type series was announced. While the Haiyang 1 series concentrated on ocean color monitoring, the Haiyang 2 series would use microwaves to monitor the dynamic ocean environment, while the Haiyang 3 series would use Synthetic Aperture Radar (SAR) for surveillance and

mo 105 по 115 120 125 150 155 140 145 150 \ ( )

Sea temperature map off the China coast, from Haiyang. Courtesy: COSPAR China.

monitoring of the ocean with a mixture of continuous and single-look monitoring with a grid antenna. Next in the Haiyang series would be a duo of Haiyang 1C (morning passes) and ID (afternoon passes).

The first of the next series, Haiyang 2 (also called 2A), was launched on 15th August 2011. A month later, over 15th-17th September, Haiyang 2A maneuvered to a holding orbit of 911-929 km, 99.36°, 103.38 min, before, on 29th September, reaching its final, almost circular orbit of 965-968 km, 99.37°, 104 min, and it was declared operational the following 2nd March. It was announced that, for the first two years, it would follow a 14-day cycle and then a 168-day cycle with a five-day sub-cycle. Its aims were to follow pollution and topography in shallow waters, ocean winds, waves, currents, tides, and storms. Its instruments comprised a microwave radiometer to measure ocean temperature, wind speed, and atmospheric vapor; a dual-frequency Ku and C-band radar altimeter to measure sea level, wind speed, and ocean height; and a radar scatterometer pencil – beam radar to measure wind speed and direction and to monitor ocean conditions. Cross-measurements between them should eliminate any inconsistencies in data. The scatterometer was the achievement of Jiang Jing Shan, who had seen how successful it was on Europe’s ERS satellite and the American Seasat. His design had two rotating antennae, horizontal and vertical. It was designed to measure wind speed within 2 m/sec and wind direction within 20° in a swath of 340 km [16]. It was announced that future missions would follow in 2012 (2B), 2015 (2C), and 2019 (2D).

In addition, China plans a joint oceanographic mission with France: CFOSAT (Chinese French Oceanic Satellite), whose objective is to monitor wind and waves globally for the purposes of marine meteorology (especially severe events), ocean dynamics, climate variability, and the surface processes. Taking advantage of French

CFOSAT, with France, a world leader in oceanography. Courtesy: CNES.

experience in such missions as TOPEX/Poseidon, Jason, and Megatropiques, it is intended to improve knowledge of sea-surface processes, waves, and sea ice, especially in coastal areas. There are two main microwave radar instruments: the Surface Waves Investigation and Monitoring instrument (France), which will not measure wave height, but direction, amplitude, and wavelength; and a scatterometer supplied by China with six rotating beams designed to hit the waves at an angle that can measure their frequency. Launch is set for 2015 on the CZ-2C with data transmitted to both countries. The series is summarized in Table 6.8.

Table 6.8. Haiyang series.

Haiyang 1A 15 May 2002 CZ-4B, piggyback with Feng Yun 1-4

Haiyang IB 11 Apr 2007 CZ-2C

Haiyang 2 15 Aug 2011 CZ-4B

All from Taiyuan.

SHENZHOU

The most substantial challenge of project 921 was the manned spacecraft itself. Appointed chief designer was a person then unknown outside China (and probably little inside China either). Qi Faren, born in Fuxian, Liaoning, in 1933, represented the main design team from CAST, assisted by the Shanghai Academy of Space

The Shenzhou design: unlike Soyuz, there are double sets of panels. Courtesy: Mark Wade.

Technology (SAST). He had graduated from the Beijing Institute of Aeronautics and Astronautics in the historic year of 1957 and, 13 years later, was involved in the building of China’s first satellite, Dong Fang Hong. He then went on to lead the Dong Fang Hong 2 and 3 programs and the Feng Yun 2. He was appointed general designer and leader of project 921 in 1992, with 1,000 scientists and engineers under his command.

At first sight, Shenzhou looks like the Russian Soyuz, a design going back to 1960. Like Soyuz, Shenzhou comprises a service or propulsion module, descent cabin, and orbital module. The service module contains four re-entry rockets with variable thrust (2,500 N, 150 N, 25 N), 28 maneuvering engines with variable thrust (150 N, 5 N), two solar panels, and radiators to discharge heat. The headlamp­shaped, sometimes called beehive-shaped, descent module has room for three, possibly four, crewmembers. It has a 65-cm hatch at the top, two portholes, a sighting window, and two parachutes (main and reserve). The orbital module, at the front, has two solar panels, maneuvering engines, two portholes, and room for a scientific package on the front. The cabin is designed to provide the astronauts with air, a temperature of 17-25°C, and humidity of 30-70%. For all its similarities with Soyuz, there were differences:

• Shenzhou is larger: 9.15 m long compared to 6.98 m;

• Shenzhou is wider, at 2.8 m in diameter, compared to 2.6 m;

• Shenzhou is heavier, at 7.79 tonnes compared to 7.2 tonnes;

• Shenzhou has solar panels reckoned to deliver up to three times more power than Soyuz: 1.53 m wide, span 17 m at the back, and placed not only the on the service module (24 m2), but also on the orbital module, span 10.4 m (although the latter were not deployed on Shenzhou 1 and 7);

• the orbital module is heavier (2 tonnes), can be left in orbit for independent flight, and has four groups of four maneuvering engines; it is longer than Soyuz: 2.8 m compared to 2.2 m;

• the descent module is slightly larger: 2.517 m in diameter (Soyuz was 2.17 m) and longer (2.5 m compared to 1.9 m), but has the same aerodynamic shape, with a volume of 6 m3;

• the propulsion or service module is 2.94 m in length and 2.8 m in diameter, compared to Soyuz’s length of 2.3 m and diameter of 2.2 m; it has four engines, compared to a single one on Soyuz;

• the escape tower is similar: 7.16 m long, diameter from 33 cm to 70 cm [3].

In other words, Shenzhou follows the general configuration of Soyuz but is far from a copy. The Chinese themselves made comparisons between Shenzhou and Soyuz. Overall internal volume is 13% larger, making Shenzhou, they say, larger, roomier, and better. It has a different docking system: an androgynous petal-style docking system, rather than the probe-and-drogue of Soyuz. Table 8.5 compares the two. As may be seen, Shenzhou is clearly influenced by the Soyuz design, but to describe it as a “copy” would be both inaccurate and unfair. The Chinese became sensitive to allegations of copying and at press conferences stressed that Shenzhou was “Made in China” (“Made in China” stated emphatically in English).

The Shenzhou fairing is 15.1 m long, 3.8 m in diameter, and it weighs 11.26 tonnes. Its tower can be ignited at any time from 15 min before launch to 130 sec after lift-off, when it is then fired free, while the shroud remains in place to 200 sec: its top motors can be used to pull Shenzhou free should an emergency develop during these later stages of launch. The escape system can be activated by the yuhangyuan, mission control, or by the automatic guidance system should it detect that the rocket is heading badly off course. Different combinations of its four engines can be used for escape below 39 km (the first three sets), 39-110 km (the second and third sets), and to whisk the tower away if still unused (the small top set). Escape at low altitude would be a memorable experience, pulling 20 G. A similar launch escape system was once used when a Soviet rocket exploded on the pad in September 1983. Cosmonauts Vladimir Titov and Gennadiy Strekhalov were grateful when it did indeed work as advertised. They had a bumpy landing but were very much alive. Development of the escape system proved to be one of the most difficult parts of the design and it took two years to make a successful test.

The escape tower might be called upon to work but, at the other end of the mission, the parachute of the descent module must always work. Here, the Chinese made the largest ever parachute for a returning manned spacecraft. The landing sequence would trigger as the descent module reached subsonic speed 15 km above

Shenzhou

Soyuz*

Complete spacecraft

Weight

7.8 tonnes

7.21 tonnes

Length

9.15 m

6.98 m

Diameter

2.8 m

2.6 m

Propulsion module

Weight

3 tonnes

2.95 tonnes

Propellant

1.1 tonnes

900 kg

Length

2.94 m

2.3 m

Diameter

2.8 m

2.2 m

Base

2.8 m

2.72 m

Solar panels

Two of 24 m2

Two

Descent module

Weight

3.2 tonnes

3 tonnes

Length

2.5 m

1.9 m

Diameter

2.5 m

2.17 m

Orbital module

Weight

2 tonnes

1.3 tonnes

Length

2.8 m

2.2 m

Diameter

2.8 m

2.25 m

Solar panels

Two of 12 m2

None

* This is the TM version, which operated from 1986 to 2002. The current TMA-OM is larger.

the ground. First, the hatch cover is jettisoned and the pilot chute comes out for 16 sec to slow the module from 180 m/sec to 80 m/sec. Next, the deceleration chute comes out, slowing the cabin to 40 m/sec, bringing out the main parachute. This is a huge canopy, at 80 m tall, 30 m across, weighing 90 kg, with an area of 1,200 m2 – 20% broader than the Soyuz parachute, held by 100 25-mm-diameter cords, each able to bear a weight of 300 kg. Once it billows out, it slows Shenzhou to its descent speed of between 15 m/sec and 8 m/sec. The parachute is made of 1,900 pieces of thin strong fabric able to withstand high loads and temperatures of up to 400°C. Should something go horribly wrong, like the parachute twist or Roman candle, then a reserve parachute can be ejected. This is much smaller – 63% of the size of the main chute, at 760 m2. The heat shield is then dropped at 5 km. But, assuming all is well, the final action takes place as the cabin comes in to land. Just 1 m above the ground, a gamma detector senses the touchdown and fires solid-fuel retrorockets to cushion the final descent to 1 m/sec, simultaneously severing the parachute so that it will not drag the cabin in a high wind. Once landed, the cabin includes survival suits, sleeping bags, radio beacon, smoke generator, signal rockets, dye, mirror and compass, life raft, pistol, knife, first aid, and even shark repellant. The main beacon begins sending signals from the end of blackout at 243 MHz while the spacecraft is still 40 km up, while the astronauts themselves can erect two high-frequency transmitters once they land. They also have a beacon to transmit on the international emergency frequency of 406 MHz.

The orbital module is sufficiently large for basic comforts to be provided for the orbiting yuhangyuan. They can sleep in sleeping bags mounted on the wall. A sealed plastic tent is provided so that they may shower – a facility never provided on Soyuz. Developing the spacecraft took much longer and was much more difficult than expected. By 1997, it had got little further than the shell of the prototype in the workshop, to the extent that opponents of the project made a fresh attempt to have it canceled. A counter-proposal for an unmanned lunar program to replace Shenzhou reached the state council, but Prime Minister Zhu Rongji would not approve such a late, radical change of course. The engineers decided, meantime, to buy time by putting into orbit a minimalist prototype, with an all-up version to follow later.

China’s ambitions

This final chapter looks at China’s space ambitions, focusing on the construction of the new cosmodrome on Hainan Island and the new Long March 5, 6, and 7 launchers. The chapter looks at whether we may expect China to send astronauts to the Moon and further afield and, if so, when? Other areas of Chinese technological development are discussed, such as space shuttles and advanced engines. This chapter looks at the Chinese space program in its global perspective (e. g. size of program, budget) and analyzes its key characteristics, features, focus, and rationale. Finally, there is speculation on its future lines of development to 2050.

CHINA IN A COMPARATIVE INTERNATIONAL PERSPECTIVE

If we define a space power as a country or block able to put its own satellite into orbit, the world has 10 space powers: Russia, the United States, France, Britain, Europe, China, Japan, India, Israel, and Iran. Of these, Britain and France no longer have a national satellite launching program, so the current relevant number is really eight (Britain cancelled its launcher program before its first successful mission, while France merged its launcher program with the European one).

Nevertheless, it is valuable to set the Chinese space program in a comparable international perspective, both over the whole period from 1957 and, for contemporaneity, the five most recent years (2007-11) and 2011, a landmark year (Table 10.1).

China therefore accounts for a tiny proportion of world space launches (2.8%). If we look outside the two leading superpowers, though, and focus on the minor powers, China then accounts for 30.76% of them – almost a third. What is more interesting is the changing order of launches. Russia has almost always been the leading spacefaring nation in terms of launches, followed closely by the United States and, some distance behind, Europe. In 2007, China overtook Europe as the third largest launcher and, in 2011, overtook the United States – two significant landmarks. By the end of June 2012, its mid-year total was only one launch behind Russia, with the United States trailing.

1957-2011

2007-11

2011

Russia

2,942

149

30

United States

1,407

88

17

Europe

204

30

5

China

154

59

18

Japan

79

11

3

India

28

12

3

Israel

6

1

Iran

2

2

1

4,822

352

77

Looking at deep-space missions (the Moon, Venus, Mars, and beyond), six space powers have now launched deep-space missions: the United States, Russia, Europe, Japan, China, and India. Turning to geosynchronous orbit, only six countries have launchers able to reach 24-hr orbit: the United States, Russia, Europe, China, Japan, and, since 2001, India. China is consistently in the top league of the space nations.