Category The Secret of Apollo

Systems Management and Its Promoters

Four social groups developed and spread systems management: military offi­cers, scientists, engineers, and managers. All the groups promoted aspects of systems management that were congenial to their objectives and fought those that were not. For example, the military’s conception of ‘‘concurrency’’ ran counter in a number of ways to the managerial idea of ‘‘phased plan­ning,’’ while the scientific conception of ‘‘systems analysis’’ differed from the engineering notion of ‘‘systems engineering.’’ Academic working groups pro­moted by scientists and engineers conflicted with hierarchical structures found in the military and industry, and the working groups’ informal meth­ods frustrated attempts at hierarchical control through formal processes. The winners of these bureaucratic fights imposed new structures and processes that promoted their conceptions and power within and across organizations.

In the early 1950s, the prestige of scientists and the exigencies of the Cold War gave scientists and military officers the advantage in bureaucratic com­petition. Military leaders successfully harnessed scientific expertise through their lavish support of scientists, including the development of new labora­tories and research institutions. Scientists in turn provided the military with technical and political support to develop new weapons.18 The alliance of these two groups led to the dominance of the policy of concurrency in the 1950s.19

To the air force, concurrency meant conducting research and development in parallel with the manufacturing, testing, and production of a weapon. More generally, it referred to any parallel process or approach. Concurrency met the needs of military officers because of their tendency to emphasize external threats, which in turn required them to respond to those threats. Put differ­ently, for military officers to acquire significant power in a civilian society, the society must believe in a credible threat that must be countered by mili­tary force. If the threat is credible, then military leaders must quickly develop countermeasures. If they do not, outsiders could conclude that a threat does not exist and could reduce the military’s resources. For the armed forces, ex­ternal threats, rapid technological development, and their own power and re­sources went hand in hand.

Scientists also liked concurrency, because they specialized in the rapid cre­ation of novel ‘‘wonder weapons’’ such as radar and nuclear weapons. Even when scientists had little to do with major technological advances, as in the case of jet and rocket propulsion, society often deemed the engineers ‘‘rocket scientists.’’ Scientists did little to discourage this misconception. They gained prestige from technical expertise and acquired power when others deemed technical expertise critical. Scientists predicted and fostered novelty because discovery of new natural laws and behaviors was their business. Novelty re­quired scientific expertise, whereas ‘‘mundane’’ developments could be left to engineers.

While the Cold War was tangibly hot in the late 1940s and 1950s, American leaders supported the search for wonder weapons to counter the Communist threat. Although very expensive, nuclear weapons were far less expensive than maintaining millions of troops in Europe, and they typified American prefer­ences for technological solutions.20 Military officers allied with scientists used this climate to rapidly drive technological development.

By 1959, however, Congress began to question the military’s methods be­cause these weapons cost far more than predicted and did not seem to work.21 Embarrassing rocket explosions and air-defense system failures spurred criti­cal scrutiny. Although Sputnik and the Cuban Missile Crisis dampened criti­cism somewhat, military officers had a difficult time explaining the apparent ineffectiveness of the new systems. Missiles that failed more than half the time were neither efficient military deterrents nor effective deterrents of congres­sional investigations. The military needed better cost control and technical reliability in its missile programs. Military officers and scientists were not par­ticularly adept in these matters. However, managers and engineers were.

Engineers can be divided into two types: researchers and designers. Engi­neering researchers are similar to scientists, except that their quest involves technological novelty instead of ‘‘natural’’ novelty. They work in academia, government, and industrial laboratories and have norms involving the pub­lication of papers, the development of new technologies and processes, and the diffusion of knowledge. By contrast, engineering designers spend most of their time designing, building, and testing artifacts. Depending upon the product, the success criteria involve cost, reliability, and performance. Design engineers have little time for publication and claim expertise through product success.

Even more than design engineers, managers pay explicit heed to cost con­siderations. They are experts in the effective use of human and material resources to accomplish organizational objectives. Managers measure their power from the size and funding of their organizations, so they have conflict­ing desires to use resources efficiently, which decreases organizational size, and to make their organizations grow so as to acquire more power. Ideally, managers efficiently achieve objectives, then gain more power by acquiring other organizations or tasks. Managers, like engineers, lose credibility if their end products fail.

As ballistic missiles and air-defense systems failed in the late 1950s, mili­tary officers and aerospace industry leaders had to heed congressional calls for greater reliability and more predictable cost. In consequence, managerial and engineering design considerations came to have relatively more weight in technology development than military and scientific considerations. Man­agers responded by applying extensive cost-accounting practices, while engi­neers performed more rigorous testing and analysis. The result was not a ‘‘low cost’’ design but a more reliable product whose cost was high but pre­dictable. Engineers gained credibility through successful missile performance, and managers gained credibility through successful prediction of cost. Be­cause of the high priority given to and the visibility of space programs, con­gressional leaders in the 1960s did not mind high costs, but they would not tolerate unpredictable costs or spectacular failures.

Systems management was the result of these conflicting interests and ob­jectives. It was (and is) a melange of techniques representing the interests of each contributing group. We can define systems management as a set of orga­nizational structures and processes to rapidly produce a novel but dependable technological artifact within a predictable budget. In this definition, each group appears. Military officers demanded rapid progress. Scientists desired novelty. Engineers wanted a dependable product. Managers sought predictable costs. Only through successful collaboration could these goals be attained. To suc­ceed in the Cold War missile and space race, systems management would also have to encompass techniques that could meet the extreme requirements of rocketry and space flight.

From Student Rocketry to Weapons Research

In 1936, Caltech graduate student Frank Malina learned of Austrian engineer Eugen Sanger’s proposed rocket plane. This stimulated Malina’s interest in rocketry, and aeronautics professor Theodore von Karman agreed to serve as his thesis adviser. Learning little from a visit to secretive rocket pioneer Robert Goddard, Malina and his assistants began rocket motor tests in an isolated area near Pasadena. After several failures, they succeeded in running a forty – four-second test firing. In May 1938, a new heat-resistant design operated for more than a minute.2

In 1938, Army Air Corps commander H. H. ‘‘Hap’’ Arnold made a sur­prise visit to Caltech and took interest in the project. He asked the National Academy of Sciences to fund research on rocket-assisted aircraft takeoff. Von Karman got the job, with Malina doing most of the work. Money soon began to flow, and by July 1940 the group moved permanently from the Caltech cam­pus to the test site.3

Malina’s growing team used theoretical analysis and practical experimen­tation to create a series of technical breakthroughs that became the founda­tion of solid-propellant rocketry. The army and navy wanted rockets to assist aircraft takeoff from short airfields and aircraft carriers, leading Malina’s team to consider mass production of the rockets. Malina unsuccessfully tried to interest aircraft companies. Failing in this, he, von Karman, and others started the Aerojet Company, which by 1943 had large navy orders. Although JPL de­veloped the initial designs, it never had to deal with manufacturing problems, passing these to Aerojet.4

After the military discovered German preparations to launch V-2 rockets,

some army officers paid greater attention to rocketry. The Army Air Forces was not interested because long-range rockets did not promise an immedi­ate payoff and because it had a vested interest in manned bombers. By con­trast, Army Ordnance officers saw rockets as long-range artillery and hence as a means to extend the range of their artillery and political aspirations. They urged Caltech to propose a comprehensive program, which led to the offi­cial founding of JPL in June 1944 with an Army Ordnance contract for $1.6 million. Despite Caltech leaders’ initial view that JPL would aid the army dur­ing only wartime, they quickly became addicted to the contract’s overhead money. JPL became a permanent operation.5

JPL proposed to build a series of progressively larger and more sophisti­cated rockets, named in rank order Private, Corporal, Sergeant, and Colonel. Private, developed in 1944 and early 1945, proved successful when designed as a simple rocket but inaccurate when modified to include wings. Private’s performance proved not only that JPL could design a simple rocket without attitude control or guidance but also that long-range rockets were imprac­tical until JPL developed an automatic control system. The Corporal series began with an unguided sounding rocket known as the WAC Corporal, in­tended to achieve the highest possible altitude. It reached altitudes of forty miles in October 1945 and was the immediate progenitor of Aerojet’s Aero- bee sounding rocket, used for years after as a scientific research vehicle. Rela­tions between JPL and Aerojet were good, as JPL researchers passed research innovations to Aerojet, which developed them for production. With financial interests in Aerojet, JPL researchers benefited handily.6

The organization of JPL’s early rocketry was simple. It began as a stu­dent research project, with Malina, John Parsons, and Edward Forman con­structing test stands, motors, and fuels. The group added a Research Analysis section, which performed parametric analyses of aircraft takeoff with rocket assistance and developed design objectives. Homer Stewart and Hsue-shen Tsien did many of these tasks, which Stewart later recalled as being the sys­tems engineering for the group.7

As the program grew, Malina directed JPL while Army Ordnance handled the coordination among JPL, White Sands Missile Range, the Signal Corps, and the Ballistic Research Laboratory of Aberdeen Proving Ground. The lat­ter two organizations assisted with flight test data acquisition. Malina di­vided JPL’s twenty-two personnel into seven small groups: Booster, Missile, Launcher and Nose, Missile Firing, External Ballistics, Photo and Material, and Transportation and Labor. The army’s contingent totaled thirteen. Prior to each test round, Malina held a conference where each group discussed prior results and checked weather and preparations. Douglas Aircraft manufactured the rocket, but the team often performed last-minute modifications at White Sands.8

WAC Corporal paved the way for JPL’s first true surface-to-surface missile, the larger and more complex liquid-fueled Corporal E. JPL engineers devel­oped a comprehensive test program to ensure that the components and the integrated vehicle functioned correctly. They developed static structural tests, hydraulic tests for all fluid flow components, and rocket motor tests. Engi­neers also created a full-scale model used to check pressure and temperature characteristics under firing conditions on a static test stand at Muroc, Cali­fornia. The test stand held the vehicle on the ground as the engine fired, while electrical instrumentation measured structural loads, pressures, and tempera­tures. Douglas Aircraft manufactured the flight test vehicles, which the army transported to its new assembly and launch facilities at White Sands, where engineers performed final leak and electrical tests. Technicians then moved the rocket seven miles to the launch site, where the crew simulated a firing for training purposes and as a final telemetry check. They then fueled and launched the vehicle.9

JPL engineers fired the first Corporal E in May 1947. The first round was a success, but round two produced insufficient thrust. Round three failed when the rocket motor throat burned out and the control system failed. Engineers went back to the drawing boards. Only in June 1949 did the next Corporal E fly, with a new design using axial-flow motors.10

After the Soviets exploded their first atomic bomb in August 1949, Army Ordnance officers asked JPL Director Louis Dunn11 and Electronics Depart­ment head William Pickering whether Corporal could be converted into an operational missile. Dunn stated that JPL could handle this conversion if it developed a guidance and control system from existing technologies. In March 1950, Army Ordnance decided to make Corporal into a weapon.

When the Korean War broke out in the summer of 1950, the Truman ad­ministration gave Chrysler executive K. T. Keller the charter to develop mis­siles as quickly as possible. Rejecting a Manhattan Project-style program, Keller decided instead to exploit existing missile programs that held prom­ise. Corporal was the army’s best-developed missile, so Army Ordnance com­mitted it to rapid development. With this decision, JPL embarked upon a ven­ture that changed it from a research institution into the equivalent of an army arsenal.12

The American Challenge

The European fear of gaps between themselves and the superpowers derived from changed political, military, and economic realities after World War II. Germany was devastated, occupied, and dismembered. Italy was torn between its Fascist past, the resistance movement led by the Communists, and the Catholic Church. France had been defeated by Nazi Germany, then riven by hostilities between the Vichy regime, Charles de Gaulle’s Free French, and the Communist Party. Britain was victorious, but the war depleted its treasury and exhausted its people. By contrast, the Soviet Union’s armies advanced into and remained in Central Europe. The United States emerged from the war with sole possession of the atomic bomb, a booming economy, and growing resources. The Soviet Union and the United States became the superpowers, relegating Western Europe to second-tier status.

Many American diplomats believed a strong, united Europe was the best means to defend against Soviet military expansion or internal chaos that might lead to Communist takeover. To strengthen the German economy without antagonizing France, American diplomats in 1947 offered the Mar­shall Plan to European countries on the condition that they work together to allocate funds. This led to the creation of the Organization for European Economic Cooperation, which later became the Organization for Economic Cooperation and Development (OECD). The Communist coup in Czechoslo­vakia and the Berlin blockade inaugurated negotiations that led to military cooperation with the North Atlantic Treaty Organization in 1949.1

European leaders also sought to cooperate with each other, apart from the United States. France decided to control German ambitions by forming a strong alliance with its historic enemy. The Low Countries, which needed a strong European economy with which to trade, and the Italians, who needed an outlet for unemployed workers and access to technology and natural re­sources, combined with France and West Germany to form the European Coal and Steel Community in 1950. The same countries agreed to the Common Market in 1957, which lowered mutual tariff barriers and created the large market they believed critical for economic growth.

Nuclear technology development also benefited from European integra­tion. Physicists Pierre Auger of France and Edoardo Amaldi of Italy led efforts to create a European laboratory for high-energy physics research to com­pete with U. S. physics researchers. European research leaders agreed to create CERN in February 1952 to develop a large particle accelerator and support­ing facilities. The need to distribute and control uranium for nuclear reactors led to the creation of EURATOM in the 1957 Treaty of Rome that created the Common Market. Despite these European efforts to enlarge their market and pool resources for nuclear technology, American developments in electronics and computers, and the American and Soviet development of rocketry and missiles, appeared to keep the superpowers several steps ahead.2

In 1964, French journalist Jean-Jacques Servan-Schreiber wrote a book that served as a manifesto to European governments and industry: The American Challenge. He described the penetration of American industry into Europe and argued that the cause was not ‘‘a question of money.’’ Rather, the United States had developed better and more widespread education, leading to more flexible policies and management. As he put it, ‘‘Europe’s lag seems to concern methods of organization above all. The Americans know how to work in our countries better than we do ourselves. This is not a matter of ‘brain power’ in the traditional sense of the term, but of organization, education, and train­ing.’’3 Significantly, he illustrated American dominance by using the examples of the computer and aerospace industries.

Servan-Schreiber had influential readers on both sides of the Atlantic. U. S. Secretary of Defense Robert McNamara thought ‘‘the technological gap was misnamed,’’ believing it to be a managerial gap. Europeans needed to develop their educational systems. McNamara noted, ‘‘Modern managerial education — the level of competence, say, of the Harvard Business School—is practically unknown in industrialized Europe.’’4 West Germany’s defense minister, Franz Josef Strauss, also agreed with the French journalist, believing the technology gap was due to advances in space technology, computers, and aircraft con­struction, three areas he thought decisive for the future. Because large corpo­rations performed the majority of research and because of the large domestic market, American companies had the advantage of scale over their European competitors. Strauss’s solution was to create an integrated European com­munity with common laws and regulations and to pool European resources. European countries needed to launch large, multinational high-technology projects to provide opportunities for European corporations to work on big research and development endeavors.5

Both Servan-Schreiber and McNamara believed that their societies needed more and better management. According to McNamara, ‘‘Some critics today worry that our democratic, free societies are becoming overmanaged. I would argue that the opposite is true. As paradoxical as it may sound, the real threat to democracy comes not from overmanagement, but from undermanage­ment. To undermanage reality is not to keep it free. It is simply to let some force other than reason shape reality.’’6

Servan-Schreiber’s views were similar: ‘‘Only a deliberate policy of reinforc­ing our strong points — what demagogues condemn under the vague term of ‘monopolies’ — will allow us to escape relative underdevelopment.’’ But he did make one allowance: ‘‘This strategy will rightly seem debatable to those who mistrust the influence and political power of big business. This fear is justi­fied. But the remedy lies in the power of government, not in the weakening of industry.’’7 Given the economic and military importance of technology devel­opment, Servan-Schreiber and others accepted the risks of government and business power.

Academic analysts of the technology gap used more sophisticated means to reach similar conclusions. Analyses by the OECD generally recommended increases in the number and scale of integrated European high-technology projects. The technology gap ‘‘is not so much the result of differences in tech­nological prowess, except in some special research-intensive sectors,’’ said economist Antonie Knoppers, ‘‘as of differences in management and market­ing approaches and—possibly above all-in attitudes.’’8 He believed the dis­parities were in ‘‘middle or lower levels’’ of management. Economist Daniel Spencer believed that a ‘‘more fruitful way of assessing the technological gap’’ was ‘‘to define it as a management gap’’ because American managers were ‘‘alert to opportunities created by the research of a military or nuclear or space type.’’9

Officials debated about the existence of the gap, its causes, and solutions. British leaders worried about an American “technological empire’’ and a ‘‘brain drain’’ of technical experts to the United States. The French feared the loss of economic and cultural independence. German leaders worried that the gap exposed flaws in German education and management. American poli­ticians minimized the significance or existence of a technological gap, shift­ing the argument to differences in culture and management. In 1967, Presi­dent Lyndon B. Johnson sent Science Advisor Donald Hornig to Europe with a team of experts to study the problem and asked the National Aeronautics and Space Administration (NASA) to explore new cooperative ventures with the Europeans to ease their fears. All agreed that European countries needed educational reforms to bridge the various gaps. This would take a while to ac­complish, so in the meantime, the most obvious idea was to mimic American management methods on large-scale technology programs.10

In the early 1960s, space launchers beckoned as a particularly fruitful field for integrated efforts. Developing space launchers would eliminate European dependence on the United States to launch spacecraft and also aid national efforts to develop ballistic missiles. A multinational launcher program would teach European companies to manage large programs and spur Europe’s edu­cational system to become more responsive to advanced technology and man­agement. Many advantages would accrue, if Europeans could overcome their differences.

The Technical Gains of Systems Management

Technical failures of aerospace projects are hard to hide. Rockets and missiles explode. Satellites stop sending signals back to Earth. Pilots and astronauts die. To the extent that systems management helped prevent these events, it must be deemed a technical success. Systems management methods such as quality assurance, configuration control, and systems integration testing were among the primary factors in the improved dependability of ballistic missiles and spacecraft. Missile reliability in air force and JPL missile programs in­creased from the 50% range up to the 80% to 95% range, where it remains to this day. JPL’s spacecraft programs suffered numerous failures from 1958 to 1963, but after that JPL’s record dramatically improved, with a nearly perfect record of success for the next three decades. The manned programs suffered a number of testing failures at the start but had an enviable flight record with astronauts, with the one glaring exception of the Apollo 204 fire. A strong cor­relation exists between systems management and reliability improvements.

The nature of reliability argues for the positive influence of systems meth­ods. For aerospace projects to succeed, there must be high-quality compo­nents, proper integration of these components, and designed-in backups in case failures occur. Only the last of these is a technology issue in the design sense. The selection and proper integration of components has more to do with rigorous compliance with design and manufacturing standards than it does with new technology. High component quality comes through unflag­ging attention to manufacturing processes, backed by testing and selection of the best parts. In a nutshell, it is easy to solder a joint or crimp a connec­tor pin but extremely difficult to ensure that workers perform thousands or millions of solders and crimps correctly. Even a worker with the best skills and motivation will make occasional mistakes. In systems management, so­cial processes to rigorously inspect and verify all manufacturing operations ensure high quality across the thousands of workers involved in the process.

Similarly, ensuring proper integration is a matter of making sure that each and every joint is properly soldered, every pin and connector properly crimped, every structure properly handled at all times, and all of these opera­tions rigorously tested. On top of this, ‘‘systems testing’’ checks for design flaws and unexpected interactions among components. In all of these issues, procedures and processes—not new technology—are the keys to success. Sys­tems management provided these rigorous processes and tests.

Once organizations dealt with component problems, they ran into the next most likely cause of failure: interface problems caused by mismatches between designs. By the mid-1960s, both the air force and NASA obsessively concen­trated on interface problems, which resulted ultimately from poor communi­cation, poor organization, or both. Engineers and managers recognized that differences in organizational cultures and methods made communication be­tween organizations more difficult than communication within an organiza­tion. Miscommunication led to incompatibilities between components and subsystems — incompatibilities often found when components were first con­nected and tested. More technology was not the solution. Instead, engineers needed improved communication through social processes.

Engineers enforced better communication by creating standard documents and processes. They required that one organization be responsible for ana­lyzing both sides of an interface and that the specifications and analyses be documented in a formal Interface Control Document. Many interface prob­lems were subtler than simple mismatches between physical or electrical com­ponents.

For example, engineers at Marshall Space Flight Center found that a ‘‘non­liftoff’’ of a Mercury-Redstone test vehicle occurred because the Mercury cap­sule had a different weight than the Redstone’s normal warhead, changing the time it took for the launch vehicle to separate from the launch tower. Because the combined launch complex-launch vehicle electronics required that the ve­hicle lift off at a certain rate, the changed rate led to a shutdown of the launch vehicle as emergency electronics kicked in to abort the launch.

Problems such as these were solvable not through technology but through better engineering communication and better design analysis. Once engineers understood all of the factors, the design solution was usually simple. The problem was making sure the right people had the right information and that someone had responsibility for investigating the entire situation. As ELDO’s history shows, getting an organization to pay for a change in an interface was often more difficult than formulating a technical solution. Authority and communication matter most in interface problems and solutions. Better orga­nization and better systems, not better technology, made for reliability in large aerospace projects by standardizing the processes and providing pro­cedures to cross-check and verify each item, from solder joints to astronaut flight procedures. These methods essentially provided insurance for technical success.

How much did this insurance cost? Did systems management lower costs or speed development compared to earlier processes and methods? Concurrency in the 1950s was widely believed to shorten development times, but at enor­mous cost. The secretary of the air force admitted that the air force could af­ford only one or two such programs. Schriever contended that concurrency saved money because it shortened development time. Because R&D costs are spent mostly on engineering labor, Schriever argued, shortening development time would reduce labor hours and hence cost. Most other experts then and later disagreed with him. Political scientist Michael Brown contends that con­currency actually led to further schedule slips because problems in one part of the system led to redesigns of other parts, often several times over.3

On any given design, having systems management undoubtedly costs more than not having systems management, just as buying insurance costs more than not buying insurance. The real question is whether systems management reduced the number of failures sufficiently, so that it counterbalanced the re­placement cost. For example, a 50% rate of reliability for a missile system such as Atlas in the late 1950s meant that every other missile failed. With this failure rate, the air force and its contractors could afford to spend up to the cost of an entire second missile in improvements to management processes, ifthese pro­cesses could guarantee success. In other words, at a 50% reliability rate and a cost of $10 million per missile, each successful launch costs $20 million. Thus, if process improvements can guarantee success, then spending $10 million or less per missile in management process improvements is cost-effective.

In fact, the early Atlas, Titan, and Corporal projects achieved roughly 40­60% reliability. Reliability improvement programs — that is, systems manage­ment processes — improved reliability into the 60-80% range during the 1950s and early 1960s and into the 85-95% range thereafter.4 The reliability im­provement meant that roughly nine out of ten launches succeeded, instead of one out of two. Therefore, systems management could easily have added more than 50% to each missile’s cost and still been cost-effective. NASA’s efforts to ‘‘man-rate’’ Atlas and Titan could have added 100% to costs for Atlas and Titan and still been cost-effective, because success had to be guaranteed. In fact, considering the potential loss of not only the launchers but also the manned capsules and astronauts, NASA could likely spend 200-500% on launcher im­provements and still be cost-effective, considering the low reliability of these vehicles at that time. Pending detailed cost analysis, systems management was probably cost-effective if costs were measured for each successful launch.

Another way to assess systems management is to compare missile and space programs that implemented systems management methods with programs that did not. ELDO provides the most extreme example of little or no systems management. None of its rockets ever succeeded, despite piecemeal intro­duction of some systems management methods. Comparison of JPL’s Ranger program with the contemporary Mariner program provides another example, because the Mariner design was a modification of the Ranger spacecraft. With less systems management, Ranger’s first six flights failed, whereas Mariner achieved a 50% success rate, with later Mariner spacecraft performing al­most perfectly. After strengthening systems management, Ranger’s record was three successes out of four launches.5 Assuming Ranger and Mariner costs per spacecraft were roughly equal, Mariner cost less per successful flight than early Ranger.

Aside from pure cost considerations, failures hurt an organization’s credi­bility. In the rush to beat the Soviets, early space programs lived the old adage ‘‘There is never time to do it right, but there is always time to do it over.’’ They had many failures, but in the early days executive managers were not terribly concerned. By the early 1960s, however, failures mattered; they led to con­gressional investigations and ruined careers. Systems management responded to the need for better reliability by trying to make sure that engineers ‘‘did it right’’ so they would not have to ‘‘do it over.’’

It is no coincidence that engineers developed systems management for mis­siles and spacecraft that generally cannot be recovered. When each flight test and each failure means the irretrievable loss of the entire vehicle, thorough planning is much more cost-effective than it is for other technologies that can be tested and returned to the designers. This helps to explain why the bu­reaucratic methods of systems management work well for space systems but seem too expensive for many Earth-bound technologies. For most technolo­gies, building a few prototypes and performing detailed tests with them be­fore manufacturing is feasible and sensible. Lack of coordination and plan­ning (each of which costs a great deal) can be overcome through prototype testing and redesign of the prototype. This option is not available for most space systems, because they never return.

The evidence suggests that systems management was successful in improv­ing reliability sufficiently to cover the cost per successful vehicle. Although systems management methods were not the only factor involved in these im­provements, from the standpoint of reliability, they were critical. Process im­provements, not technology improvements, ensured the proper connection and integration of thousands of components. Systems management increased vehicle costs on a per vehicle basis compared to previous methods but re­duced costs when reliability is factored in.