Category AERONAUTICS

The Gluhareff-Griswold Nexus

In 1936, Michael E. Gluhareff, an emigree Russian engineer who was chief of design for the Vought-Sikorsky Aircraft Division of United

Aircraft Corporation, began examining various tailless aircraft con­figurations. By July 1941, his study had spawned a proposed intercep­tor fighter powered by a piston engine driving a contra-rotating pusher propeller. It had a rounded delta planform resembling an arrowhead, with leading edges swept aft at 56 degrees. It featured a tricycle retract­able landing gear, twin ventral vertical fins, an extremely streamlined and rounded configuration, provisions for six heavy machine guns, and elevons (combined ailerons and elevators) for roll and pitch control. Gluhareff informed company founder Igor I. Sikorsky that its sharp sweep would delay the onset of transonic compressibility, noting, "The general shape and form of the aircraft is, therefore, outstandingly adapt­able for extremely high speeds.”[12]

The Gluhareff-Griswold NexusIn retrospect, Gluhareff’s design was a remarkable achievement, conceived at just the right time to have been completed with turbojet propulsion (for which its configuration and internal layout was emi­nently suited) though circumstances conspired against its development. Sikorsky was then perfecting the first practical helicopter—the VS-300, another revolutionary development, of course—and chose understand­ably to concentrate on rotary wing flight. He did authorize Gluhareff to solicit support from inventor-entrepreneur Roger W. Griswold, presi­dent of the Ludington-Griswold Company, about building a wind tunnel model of the configuration.[13] Tests by United Aircraft proved so encour­aging that Griswold approached the engineering staff of the Army Air Forces (AAF) at its Wright Field Aircraft Laboratory about sponsor­ing what was now called the "Dart.”[14] But having their fill of visitors

The Gluhareff-Griswold Nexus

The proposed Gluhareff Dart fighter of 1941, showing both its novel layout and, for the time, nearly as novel tricycle landing gear layout. National Air and Space Museum, Smithsonian Institution.

bringing a series of the weird and unconventional, and charged with ensuring that the AAF acquired large numbers of aircraft, and quickly, the AAF’s engineers did not pursue the project.[15]

So the Gluhareff-Griswold Dart never reached the hardware stage, the failure to build it counting as a loss to American midcentury aeronautics. As for Gluhareff, though he had made notable contributions to Sikorsky’s large flying boats (and would, as well, to his helicopters), he continued
to explore the basic design of his intriguing if abortive configuration, proposing a variety of derivatives, including in 1959 a Mach 2+ super­sonic transport with a small canard wing and double-deck fuselage.[16] If the Dart never saw development, its configuration nevertheless proved significant. In 1944, Griswold resurrected the Dart shape for a proposed 2,000-pound guided glide bomb, or "glomb.” The Army Air Forces recom­mended he obtain the NACA’s opinion of its aerodynamics, and for this, Griswold turned to Langley Memorial Aeronautical Laboratory. There, on August 19, he met with the NACA’s resident aerodynamic expert on "pilotless missiles,” Robert T. Jones. Out of that contact would emerge both the American delta and swept wing.

Enter Robert T. Jones

"R. T.” Jones was a brilliant, flight-obsessed, and largely self-taught fluid dynamicist, having dropped out of the University of Missouri to join a flying circus, then working as a designer for Nicholas-Beazley, a small Missouri aircraft company. When the Great Depression collapsed the firm, his father used political connections as Chairman of the local Democratic Party to secure Jones a job running elevators in the U. S. Capitol. In his spare time and evenings, he studied mathematics and aerodynamics with Albert Zahm, the aeronautics Chair at the Library of Congress, and with Max Munk at Catholic University. Despite his lack of a formal engineering degree, through the efforts of Representative David Lewis (a homespun Maryland progressive with a strong interest in self-improvement who had taken math instruction from the young elevator operator), Jones received a temporary appointment as a "sci­entific aide” to the NACA. There, he quickly proved such a gifted and insightful researcher that he soon secured a coveted permanent posi­tion at Langley, consorting with the likes of John Stack, Eastman Jacobs, and Theodore Theodorsen.[17]

As he considered Griswold’s "glomb,” Jones recognized that its extremely low aspect ratio shape (that is, a shape having a very long

wing root in relation to its total wingspan) could not be adequately ana­lyzed using conventional Prandtl-rooted "lifting line” theory. Instead, Jones drew on the work of his mentor Munk, using papers that Munk had written on the flow of air around inclined airship hulls and swept wings, and one by the Guggenheim Aeronautical Laboratory’s Hsue-shen Tsien, a von Karman associate at the California Institute of Technology (Caltech), on airflow around inclined bodies of revolution. He analyzed it using linear equations governing two-dimensional incompressible flow, con­sidering his results of little practical value, recalling three decades later, "I thought, well, this is so crude, nobody would be interested. So I just hid it in my desk.”[18]

Enter Robert T. JonesBut it sparked his curiosity, and in January 1945, by which time he was busy thinking about nonlinear compressible flows, he had a rev­elation: the equations he had developed months earlier for the glomb analysis could be applied to a low aspect triangular wing operating in supersonic flow, one whose wing-leading edges were so sharply swept as to place them within the shock cone formed around the vehicle and hence operating in subsonic flow. In these conditions, the wing was essentially "fooled” into behaving as if it were operating at a much lower Mach number. As Jones recalled, "It finally dawned on me that the slen­der wing theory would hold for compressible flow and even at supersonic speed if it were near the center of the Mach cone. So, I immediately got the paper out and I added the compressible flow parts to it, which was really the important part, and then I wondered well, why is it that this slender wing doesn’t have an effect on compressibility? Then I realized that it was because the obliquity of the edge and that this is the sim­ple sweep theory and would work in spite of the compressibility effect. So, I wrote a paper which incorporated the slender wing theory and also sweep theory.”[19] Jones then moved from considering a slender triangular delta [Д] to the sharply sweptback wing [л], the reverse of

Germany, where the high-speed swept wing had preceded, not followed, the delta.[20]

Enter Robert T. JonesJones’s delta and swept wing utilized, for their time, very thin airfoil sec­tions, ones typical of supersonic aircraft to come. In contrast, German swept and delta wing developer Alexander Lippisch had employed much thicker sections that proved unsuitable for transonic flight. His tailless rocket – propelled swept wing Me 163 Komet ("Comet”) interceptor, for example, essentially became uncontrollable at speeds slightly above Mach 0.82 thanks to stability changes induced by shock wave formation on its relatively thick wing. His design for a rocket-boosted, ramjet-powered delta fighter, the P 13, had such thick wing and tail sections—the pilot actually sat within the leading edge of the vertical fin—that it could never have achieved its desired transonic performance. As discussed subsequently, postwar NACA tests of a captured glider configuration of this design, the DFS DM-1, confirmed that transonic delta wings should be far thinner, with sharper leading edges. As a consequence, NACA researchers rejected the Lippisch approach, and, though some of them tried extrapolations of his designs (but with lower thickness-chord ratios and sharper leading edges), the NACA (and industry as well) adapted instead the thin slender delta, a la Jones.[21]

Dissemination, Deliberation, and Confirmation

In February 1945, Jones showed his notes on sweep to Jean Roche, the Army Air Forces technical liaison at Langley, and informed others as well, including Maj. Ezra Kotcher of the AAF’s Air Technical Service

Command, and NACA colleagues Arthur Kantrowitz and Hartley A. Soule.[22] Kotcher passed it along to von Karman and Tsien—then work­ing as scientific advisers to Gen. Henry H. "Hap” Arnold, the Army Air Forces’ Chief of Staff—and Soule and Kantrowitz urged Jones to inform the Agency’s Director of Research, George W. Lewis, of his discovery.[23] Accordingly, on March 5, 1945, Jones informed Lewis, "I have recently made a theoretical analysis which indicates that a V-shaped wing travel­ling point foremost would be less affected by compressibility than other planforms. In fact, if the angle of the V is kept small relative to the Mach angle [the angle of the shockwave], the lift and center of pressure remain the same at speeds both above and below the speed of sound.”[24] Jones subsequently undertook tests in the Langley 9-inch supersonic tunnel of a small, 4-inch-long daggerlike sheet-steel triangular wing with rounded leading edges and a span of only 1.5 inches, tests that complemented other trials at Aberdeen, MD, arranged by von Karman and Tsien.

Dissemination, Deliberation, and ConfirmationThe Langley tests, through the transonic region and up to Mach 1.75, confirmed his expectations, and Jones published his first test results May 11, 1945, noting, "The lift distribution of a pointed airfoil travelling point-foremost is relatively unaffected by the compressibility of the air below or above the speed of sound.”[25] This was almost 2 weeks before Lippisch informed von Karman, then leading an AAF European study team, of his high-speed delta concepts (during a technical intelligence interrogation at St. Germain, France, on May 23), not quite a month before von Karman assistant Clark Millikan visited the Messerschmitt advanced projects group at Oberammergau on June 9-10 and inter­rogated Waldemar Voigt about his swept wing fighter concepts, and well over a month before Millikan journeyed to Volkenrode to inter-

rogate German swept wing inventor Adolf Busemann, on June 20-21.[26]

Dissemination, Deliberation, and ConfirmationLangley’s peer reviewers and senior Agency official Theodore Theodorsen did not immediately accept Jones’s assumption that a unified slender wing theory could apply to both compressible and incompressible flows and even questioned the evidence of sweep’s benefits. Fortunately, Jones was greatly assisted in confounding skeptics by the timely results of NACA tunnel tests and falling body experiments, which left little doubt that sweep worked. As well, an associate of Jones made a most helpful discov­ery: locating a 1942 British translation of Busemann’s 1935 paper. Evidence of an enemy’s interest coincident with one’s own work always heightens its perceived value, and undoubtedly, the Busemann paper, however dated, now strongly bolstered Jones’s case. When it became time to assemble a bibliography for his swept wing report, Jones added Busemann’s paper and other German sources by Albert Betz, H. G. Kussner, Ludwig Prandtl, and Hermann Schlichting, though it is unclear whether this reflected a collegial respect across the chasm of war or simply a shrewd apprecia­tion of their persuasive value.[27]

Langley released his report in late June 1945.[28] In it, Jones noted: "the attachment of plane waves to the airfoil at near-sonic or supersonic speeds (Ackeret theory) may be avoided and the pressure drag may be reduced by the use of planforms in which the angle of sweepback is greater than the Mach angle. The analysis indicates that for aerodynamic efficiency, wings designed for flight at supersonic speeds should be swept back at an

Dissemination, Deliberation, and Confirmation

Jones showed these notes on the concept of high-speed wing sweep to Langley’s AAF technical liaison representative Jean Roche on February 27, 1945. NASA.

angle greater than the Mach angle and the angle of sweepback should be such that the component of velocity normal to the leading edge is less than the critical speed of the airfoil sections. This principle may also be applied to wings designed for subsonic speeds near the speed of sound, for which the induced velocities resulting from the thickness might otherwise be suf­ficiently great to cause shock waves.”[29] Such marked the effective birth of
the high-speed swept wing airplane in the United States, as his report weeks earlier had marked the birth of the American high-speed delta.

Dissemination, Deliberation, and ConfirmationBy the time Jones’s report appeared, Germany’s aeronautical estab­lishment was already under the microscope of Allied technical intelli­gence, whose teams swiftly focused on its intensive investment in swept wing aerodynamics for its missiles and aircraft. Replicating reaction to the earlier "discovery” of "Gottingen aerodynamics” after the First World War, the post-Second World War influence of German example and practice was even more profound. Indeed, it affected the entire post­war course of European, Soviet, and American high-speed aerodynamic research, development, test, evaluation, and acquisition. In the increas­ingly tense national security environment of the burgeoning Cold War, the national intelligence services of the various advanced aeronauti­cal nations understandably maintained very active technical collection efforts to learn what they did not already know.[30]

Dissemination, Deliberation, and Confirmation

The North American XP-86, prototype of the F-86 Sabre family, represented an amalgam of German and American swept wing and streamlined aerodynamics. USAF.

Swept Wing Challenges

The NACA so rapidly focused its attention on swept planforms that, within 2 years of the end of the Second World War, George Gray, author of a popular yet surprisingly detailed study of the Agency, could already write: "Just how far the sweepback principle can be applied with result­ing advantage is a question. . . . At about 90 percent of the speed of sound both sweepback and low aspect ratio begin to be of value, and wings that combine the two features seem to offer a promising choice. At about Mach number 1.50, a sweepback of 60 degrees seems neces­sary to escape the backward flare of the Mach angle. . . . At Mach num­ber 2.00, the angle is so acute that it is impossible to avoid it and still preserve the wings. It may be that designers preparing for flight at this speed will return to wings of low angles of sweep, and place their main dependence for drag reduction on thinning the profiles, lowering the aspect ratio, and sharpening the edges of wings.”[31] By 1950, this grow­
ing confidence in the old-new swept planform had resulted in transonic and supersonic research airplanes, a variety of military prototypes, and two operational jet fighters that would shortly clash over North Korea: the American F-86 Sabre (first flight in October 1947) and, in the Soviet Union, the MiG-15 (first flight in December 1947).[32]

Swept Wing ChallengesSwept wing aircraft, for all their high-speed advantages, posed daunt­ing stability, control, and handling qualities challenges. Foremost of these was pitch-up at low and high speeds, resulting from deteriorating longitudinal stability.[33] A swept wing airplane’s lateral-directional sta­bility was compromised as well by so-called "dihedral effects.” Swept wing aircraft with excessive dihedral experienced pronounced combined rolling and yawing "Dutch roll” motions, which would be unacceptable on both production civil and military designs.[34] Such motions would induce airsickness in passengers on large aircraft and, on bomber, fighter, and attack aircraft, prevent accurate tracking of a maneuvering target or accurate bomb release. (Indeed, it was largely because of this kind of behavior that the U. S. Air Force did not proceed with production of Northrop’s YB-49 flying wing jet bomber.) Adverse yaw posed another problem. At higher speeds, as a swept wing plane rolled from aileron

deflection, it experienced higher drag and loss of lift involving the low­ered wing, generating a tendency of the airplane to turn (reverse) into the direction of the raised wing, effectively doing the opposite of what the pilot intended. Adverse yaw could be caused by aeroelastic effects as well. That swept wing aircraft would possess behavior characteris­tics significantly different than conventional straight wing designs did not come as a surprise to the NACA or other aerodynamic researchers in America and overseas. But all recognized the need to complement theory and ground-test methodologies with flight research.

Swept Wing ChallengesThe peculiarities of swept wing aircraft, at a time when early jet air­craft lacked the power-to-weight advantages of later designs, could—and often did—prove fatal. For example, Boeing designed the B-47, America’s first large swept wing aircraft, with pod-mounted engines and a broad, highly tapered, thin swept wing. During flight-testing at higher speeds, test pilots found aileron input to roll the aircraft would twist the wing, the aileron effectively acting as a trim-tab does on a control surface. The twisted wing would overcome the rolling moment produced by the aile­ron, rolling the aircraft in the opposite direction. Aeroelastic structural divergence caused several accidents of the B-47 during its flight-testing and service introduction, forcing the Air Force to limit its permissible airspeed to 425 knots, as high as it could be safely flown if roll reversal were to be avoided. As a result, Boeing built its successors, the XB-52 and the Model 367-80 (prototype for the KC-135 family and inspiration for the civil 707), with much thicker wing roots and structures that were torsion resistant but that could still flex vertically to absorb structural loads and gust-induced loads during flight.[35]

Confronting Pitch-Up

But the most serious swept wing problem in the early jet era was pitch – up, a condition affecting both low – and high-speed flight, reflecting stall onset either from decreasing speed (low-speed pitch-up) or from trim changes during high-speed flight, particularly during accelerated
maneuvers, such as "wind-up” turns that rapidly increased g-loading and angle of attack. Pitch-up occurred at the breakpoint in a lift curve, immediately beyond the peak point where the airplane’s wing was oper­ating at its highest lift-producing angle of attack, with its lift coefficient at maximum value. At the breakpoint, the wing would begin stalling, with flow separation from the airfoil, breaking the circulatory flow pat­tern around the wing. In ideal circumstances with a straight wing air­craft, the change in lift would occur simultaneously spanwise across the wing and would typically trigger a nose drop. But in a swept wing aircraft, the stall would first begin at the tips and progress inward, the center of lift shifting forward. As the plane’s longitudinal (nose-up nose – down) stability decreased, the shifting center of lift would abruptly rotate the nose upward (hence the use of the expression "pitch-up”), even at a rate of onset beyond the capabilities of its elevator control surfaces to correct. As well, of course, since the ailerons that governed lateral con­trol (roll control) were typically located outboard on a wing, a swept wing airplane could lose its lateral control authority precisely at a point when the pilot needed as much control capability and reserve as possi­ble. Because stall onset is not always triggered uniformly, a swept wing airplane nearing the pitch-up point could experience sudden loss of lift on one wing, inducing abrupt rolling motions (called "wing dropping”), complicating its already dangerous low-speed behavior.

Confronting Pitch-UpThere was, of course, the possibility of overcoming such problems by sweeping a wing forward, not aft. A forward-swept wing (FSW) had both desirable high – and low-speed aerodynamic characteristics. Since the spanwise flow would run from the tips to the fuselage, the outer portions of the wing would stall last, thus preserving lateral control. As well, it would have more desirable pitching characteristics. Already, in the midst of the Second World War, the Germans had flown an exper­imental bomber, the Junkers Ju 287, featuring a forward swept wing, and a number of aircraft and missile projects were forecast for such planforms as well. The forward swept wing, and combined-sweep "M,” "W,” and even "X” planforms, received a great deal of postwar atten­tion, both in America and abroad. Researchers at Langley modified wind tunnel and configuration models of both the XS-1 and D-558 to employ forward-swept wing planforms, and tested conceptual planforms with both aft and forward sweep to develop comparison data. But while the FSW undoubtedly had better low-speed behavior, it had higher profile drag and posed difficult structural problems for designers. In

the precomposite structure era, an FSW had to be necessarily heavier than an aft-swept wing to avoid aeroelastic flexing that could inhibit both good flight performance and even flight safety. Further, the struc­tural and weight limitations also limited the sweep angles that an FSW could then have; even as late as the 1960s, when Germany produced a business aircraft (the Hamburger Flugzeugbau HFB-320 Hansa Jet), it possessed only modest forward sweep and, though flown suc­cessfully and built in small numbers, was not a commercial success. It would take over three decades before the advent of computerized flight control, composite structures, and a more radical vision of for­ward sweep application would result in experimental planforms like the NASA-Rockwell HiMAT remotely piloted vehicle, the piloted Air Force – DARPA-NASA Grumman X-29 (and, in Russia, an X-29-like experimen­tal aircraft, the Sukhoi Su-37). Even so, and even though forward sweep would be applied to some weapon systems (for example, the AGM-129 stealthy cruise missile, where it contributed to its low radar reflectiv­ity), forward wing sweeping would remain the exception to "normative” aft-swept wing design practice.[36]

Confronting Pitch-UpPitch-up was profoundly dangerous. At low speeds in proximity to the ground, it could—and often did—trigger a disastrous departure and crash. The recognition of such problems had caused the U. S. Navy to procure two modified Bell P-63 Kingcobra fighters (designated L-39), which had their wing panels replaced with 35-degree swept wing sec­tions, and a fuselage extension to accommodate their now-changed cen­ter of lift. Not intended for high speeds, these two low-speed swept wing research aircraft were extensively flown by various contractor, Navy, and NACA research pilots to assess the basic behavior of the swept wing, with and without lift-and-control-augmenting devices such as wing slats and flaps. They quickly encountered its limitations. On one flight with the plane in "clean” (i. e., slat-free) configuration, Bell Company test pilot A. M. "Tex” Johnston gradually raised the nose of the plane while retarding power. After just "a slight tremor” indicating the onset of asymmetric tip stall, it "instantaneously rolled to an almost inverted

position.”[37] Grumman test pilot Corwin "Corky” Meyer recalled that while the L-39 was "docile” with leading edge slats, without them it "cavorted like a cat on catnip.”[38] The two L-39 aircraft furnished vital insight into the low-speed performance and limitations of swept wing aircraft, but they also clearly demonstrated that such aircraft could, in fact, be safely flown if their wings incorporated careful design and safety devices such as fixed leading edge slots or movable slats.[39]

Confronting Pitch-UpIn military aircraft, pitch-up could prevent a pilot from maneuvering effectively against a foe, could lead to loss of control of the airplane, and could result in such excessive airframe loadings that an airplane would break up. It was no respecter of designs, even outstanding ones such as North American’s evocative F-86 Sabre, generally considered the finest jet fighter of its time by both American and foreign test pilots. First flown in October 1947, the Sabre quickly became an internationally recognized symbol of aeronautical excellence and advancement. When British test pilot Roland Beamont, a distinguished Royal Air Force fighter ace of the Second World War, evaluated the Sabre at Muroc Dry Lake in May 1948

(a month after it had dived past the speed of sound, becoming the world’s first supersonic turbojet airplane), he likewise dived it through Mach 1, thus becoming the first supersonic British pilot. Afterward, he noted approvingly in his test report, "The P-86 is an outstanding aircraft.”[40] The Sabre’s reputation was such that British authorities (frustrated by the slow development pace of Albion’s own swept wing aircraft) tell­ingly referred to it simply as "That Aircraft.” Vickers-Supermarine test pilot David Morgan recalled, "No British fighter of the day could match the handling of the North American F-86.”[41] Indeed, designers from his company, frustrated by their slow progress turning the experimen­tal Swift into a decent airplane, even resorted to crude subterfuge in an effort to unlock the Sabre’s secrets. When a pair of Canadian pilots landed at the Supermarine plant in their Canadair-built Sabres, com­pany officials, with apparent generosity, laid on a fancy lunch, driving them off to a local hotel. While the visiting airmen dined and chatted with solicitous Supermarine representatives, another team of engineers "swarmed over the Sabres to study their construction,” marveling at "this splendid aircraft.”[42]

Confronting Pitch-UpYet however "splendid” "That Aircraft” might otherwise have been, the Sabre killed unwary pilots by the dozens in accidents triggered by its low-speed pitch-up tendencies. Apollo 11 astronaut Michael Collins recalled his introduction to the F-86 at Nellis Air Force Base as "a bru­tal process. . . . In the eleven weeks I was there, twenty-two people were killed. In retrospect it seems preposterous to endure such casualty rates without help from the enemy, but at the time the risk appeared perfectly acceptable. . . . I’m surprised to have survived. I have never felt quite so threatened since.”[43] In over a decade of tests with various Sabre variants

to improve their low-speed handling qualities, NACA Ames research­ers assessed a variety of technical "fixes.” The most beneficial was the combination of artificial feel (to give the pilot more reassuring higher maneuvering control forces during the approach-to-landing, combined with greater inherent stability than possible with a non-artificial-feel sys­tem), coupled with leading-edge suction to draw off the boundary layer airflow.[44] First evaluated on a test rig installed in the Ames 40-foot by 80-foot full-scale wind tunnel, the boundary layer control (BLC) exper­iment on the F-86 proved most valuable. Ames researchers concluded: "Leading edge boundary-layer control was most effective in providing a large reduction in both stalling speed and approach speed together with an increased margin of lift for flare and maneuvering during the [land­ing] approach,” an important point, particularly for swept wing naval aircraft, which had to be controllable down to a landing on the con­fined deck of an aircraft carrier.[45] The trials benefitted not only future swept wing studies but, more generally, studies of BLC applications for Vertical/Short Take-Off and Landing (V/STOL) aircraft systems as well.[46]

Confronting Pitch-UpNor were the Sabre’s high-speed pitch-up characteristics innocuous. The NACA flew extensive Sabre evaluations at its High­Speed Flight Research Station and at Ames to refine understanding of

its transonic pitch-up behavior, which test pilot A. Scott Crossfield recalled as "violent and dangerous.”[47] It could easily exceed its design load factors, sometimes pitching as high as 10 g. At 25,000 feet, in the very midst of its combat operating envelope (and at lift coefficients less than its maximum attainable lift) the Sabre’s pitch-up onset was so severe that g forces once momentarily "blacked out” the test pilot. Overall, after extensive Ames tests, the early slatted F-86A with a conventional fixed horizontal stabilizer and movable elevator was judged "unsatisfactory” by a group of highly experienced fighter test pilots, thanks to its "severe pitch – up tendencies.” The same group found the later slat-less "6-3” F-86F (so – called because its wing extended forward 6 inches at the root and 3 inches at the tip, a modification made by North American based on Korean war experience) had "moderate” pitch-up tendencies. Because of this, and because it had an adjustable (not fixed) horizontal stabilizer in addition to its elevator, the pilots judged the F-86F’s pitch-up behavior "unsatisfactory but acceptable.”[48]

Confronting Pitch-UpWorse swept wing problems plagued the Sabre’s great adversary, the Soviet MiG-15. Unlike the Sabre, the MiG-15 had a less aerodynamically pleasing configuration, and its fixed horizontal stabilizer and elevator combination, located midway up the vertical fin, made it more suscep­tible to aerodynamic "blanketing” of the tail by the wing and, hence severe pitch-up problems, as well as limiting its transonic maneuver­ability (to the Sabre’s advantage). During the Korean war, Sabre pilots frequently saw MiG pilots eject from otherwise perfectly sound aircraft that had pitched up during turns, stalled, and entered flat, unrecoverable spins. Nearly five decades later, Soviet pilot Stepan Mikoyan (nephew of Anushavan "Artem” Mikoyan, cofounder of the MiG design bureau) con­ceded that high-speed accelerated stalls often triggered unrecoverable spins, leading to "a number of ejections and fatal accidents.”[49] Postwar American testing of a MiG-15 delivered by a defecting North Korean

pilot confirmed the MiG’s marked vulnerability to pitch-up-induced stalls and spins; indeed, the defector’s own instructor had been lost in one such accident. Not surprisingly, when Mikoyan produced the MiG – 17—the lineal successor to the MiG-15—it had a very different outer wing configuration giving it more benign behavior.[50]

Confronting Pitch-UpWestern European swept wing aircraft exhibited similar problems as their American and Soviet counterparts. For a brief while, influenced by the Messerschmitt Me 163 Komet and a variety of other German proj­ects, designers were enthralled with the swept wing tailless configura­tion, believing it could resolve both the challenges of high-speed flight and also furnish inherent stability.[51] Then, in September 1946, British test pilot Geoffrey de Havilland perished in an experimental tailless transonic research aircraft, the de Havilland D. H. 108 Swallow, when it began an undamped violently divergent longitudinal pitching oscilla­tion at Mach 0.875, breaking up over the Thames estuary and proving that the "sound barrier” could bite.[52] Subsequently the NACA evaluated the Northrop X-4, a generally similar American configuration. Tested at high altitude (and hence, at low dynamic pressure), the X-4 fortu­nately never "diverged” as violently as the ill-fated D. H. 108. Instead, as NACA pilot A. Scott Crossfield remembered, at Mach 0.88 "it broke

into a steady porpoising motion, like an automobile cushioning over a washboard road.”[53] Conventional tailed European swept wing designs followed the same steep learning curve as American ones. Britain’s Supermarine Swift, a much-touted design from the builder of the legendary Spitfire, had a "vicious” transonic pitch-up. By the time it entered service, it was years late, obsolescent, and useless for any other role save low-level tactical reconnaissance.[54]

The Skyrocket: The NACA’s Pitch-Up Platform

Pitch-up afflicted a wide range of early transonic and supersonic jet fighters, and the NACA was fortunate in having an available research airplane that could study swept wing behavior across the transonic regime. This aircraft was the Douglas D-558-2 Skyrocket, "Phase II” of the larger D-558 research aircraft program, a Douglas Company ven­ture begun in 1945 and sponsored by the U. S. Navy and the NACA. The D-558 program had begun as a companion to the XS-1 effort and repre­sented a different design approach. Where the XS-1 was rocket powered, the D-558 Skystreak used a turbojet; where the XS-1 employed an ogi­val projectile shape with a midwing of 8-percent thickness-chord ratio, the D-558 used a constant-diameter tube wrapped around an axial-flow turbojet engine and a low wing of 10-percent thickness-chord ratio; and where the XS-1 was air launched, the D-558 took off from the ground as a conventional airplane. Both were straight wing designs, with their adjustable stabilizers and movable elevators placed midway up their ver­tical fins. All together, the Navy ordered six D-558 aircraft from the firm.[55]

Originally, swept wings had not featured in the D-558 program. Then the discovery by Douglas engineers of a plethora of German tech­nical reports (coupled with the work of Jones and others in the United States) caused the Navy, the NACA, and Douglas to modify the D-558
program.[56] The last three aircraft were completed as a new swept wing design. Initially, the planned modification seemed straightforward: replace the straight wing and tail surfaces with swept ones. In antic­ipation, Langley tested models of the D-558 with a variety of swept wings. But the possibility of giving the swept wing D-558 supersonic performance—something the D-558 straight wing lacked—resulted in a more radical redesign. Gone was the simple Pitot intake inlet. Instead, designer Edward "Ed” Heinemann and his team chose an ogival body shape resembling the XS-1. The new 35-degree slat-equipped swept wing was relocated to midfuselage position and given anhedral (droop), with the landing gear relocated into the fuselage. In contrast to the original single-engine D-558s, the new swept wing design featured both a 6,000- pound thrust rocket engine and a small turbojet. Thus recast, it received the designation D-558-2 and the name Skyrocket, to distinguish it from the straight wing Skystreak, itself redesignated D-558-1. The result was one of the most elegant and significant aircraft of all time.

The Skyrocket: The NACA's Pitch-Up PlatformThe first D-558-2 flew in February 1948, though initial flight tests gave little hint of how remarkably versatile and successful it would prove. At max takeoff weight, it was so underpowered (and thus so slug­gish) that it needed four solid-fuel jettisonable assistance takeoff (JATO) rockets to help kick it aloft. Eventually, the Navy and the NACA would arrange to take the second and third Skyrockets and modify them for air launch from a modified PB2-1S (Navy B-29) Superfortress, dramatically improving both their safety and high-speed performance; fuel previously

spent climbing aloft could now be more profitably expended exploring the transonic and supersonic regimes. While the third aircraft retained its jet and rocket engine, the second had its jet engine removed and additional tanks for rocket propellant and oxidizer installed. Thus modified, the second aircraft reached Mach 2.01 in November 1953, flown by Scott Crossfield, the first piloted Mach 2 flight, having earlier attained an alti­tude of 83,235 feet, piloted by Lt. Col. Marion Carl, a noted Marine aviator. Eventually, the NACA received the first D-558-2 as well (which Douglas had employed for contractor testing). The Agency modified it as an all-rocket aircraft, though it only completed a single check flight before being retired.

The Skyrocket: The NACA's Pitch-Up PlatformBefore all-rocket modification, the second Skyrocket introduced Agency pilots to the hazards of pitch-up. On August 8, 1949, during its seventh flight, pilot Robert Champine banked into a 4 g turn at Mach 0.6, and the Skyrocket violently pitched up, reaching 6 g. It responded rapidly to full-down elevator, and Champine made an uneventful (if pru­dently precautionary) landing. Thereafter, until returning the airplane to Douglas for all-rocket modification in 1950, the NACA flew extensive pitch-up investigations with it. In November, pilot John Griffith repli­cated the 4 g and Mach 0.6 pitch-up that Champine had experienced earlier. This time, however, he attempted to continue flying to more fully assess the Skyrocket’s behavior. Thus challenged, it snap-rolled on its back. After recovering, Griffith probed its low-speed behavior, gradually slowing, with flaps and gear extended and wing slats closed. At 14,000 feet and 130 mph, the Skyrocket pitched up, rolling into a spin, and los­ing 7,000 feet of altitude before its pilot could recover.[57] Clearly its ugly behavior did not match its alluring form.

Focused on extending the Skyrocket’s performance into the super­sonic regime by modifying the second aircraft as a pure rocket plane, the NACA turned to the third aircraft, which retained its jet engine as well as its rocket, for future pitch-up research. Air-launched, the jet-and- rocket Skyrocket had tremendous research productivity; it could accelerate

Подпись: Leading-edge wing chord extensions tested on the third D-558-2 Skyrocket, one of many combinations of flaps, slats, fences, and extensions evaluated in the NACA's 6-year-long study of the Skyrocket's pitch-up behavior. NASA.

into the supersonic regime, above Mach 1.1, and its jet engine enabled it to "loiter” in the transonic region, making repeated data-gathering runs. Its comprehensive instrumentation package enabled assessment of loads, pressure distributions, and accelerations, evaluated against background data on flight conditions, aircraft attitude, and control surface position and forces. Between the end of 1950 and the fall of 1956, it completed 66 research flights on pitch-up and associated transonic phenomena, includ­ing the evaluation of the effects external wing stores—tanks and bomb shapes—had on aircraft performance. It evaluated a variety of proposed aerodynamic solutions and fixes to resolve the pitch-up problem, includ­ing various wing fence designs to "channel” airflow and inhibit the char­acteristic spanwise-flow (flow toward the wingtips) found with swept wing planforms, various combinations of slat and flap position, changes to lead­ing edge shape, and "sawtooth” leading edge extensions on its outer wing panels. All of this testing reinforced what engineers suspected, namely that no one overall technical fix existed that could resolve the pitch-up challenge. Rather, swept wing aircraft design was clearly situational, and, depending on the mission of the aircraft and its resulting design, combina­tions of approaches worked best, chief among them being low placement of

the horizontal tail, below the chord-line of the wing, coupled with provision of stability augmentation and pitch-damping flight control technology.[58]

Ensuring Longitudinal Control: Transforming the Horizontal Tail

Though not seemingly connected to the swept wing, the researching and documenting of the advantages of low-placed horizontal tail surfaces con­stituted one of the major NACA postwar contributions to flight, one dra­matically improving both the safety and flight performance of swept wing designs. As a consequence, the jet fighter and attack aircraft of 1958 looked very different than did the initial jet (and rocket) aircraft of the imme­diate postwar era. Then, high-speed aircraft designers had emphasized tailless planforms, or ones in which the horizontal tail was well up the vertical fin (for example, both the XS-1 and the D-558 families). A decade later, aircraft introduced into test or service—such as the Vought F8U-1 Crusader, the Republic F-105B Thunderchief, the Grumman F11F-1 Tiger, the McDonnell F4H-1 Phantom II, the North American A3J-1 Vigilante, and the Northrop N-156 (progenitor of both the T-38 supersonic trainer and the F-5 lightweight fighter)—shared common characteristics: irre­versible power-operated flight controls, stability augmentation, and damp­ing, large vertical fins for enhanced directional stability, area-ruling, and low-placed, all-moving tails. Foreign aircraft exhibited similar features: for example, the MiG-21, Folland Gnat, and English Electric Lightning.

Aircraft lacking such features manifested often-perilous behavior. The Douglas XF4D-1 Skyray, a graceful rounded delta, had a sudden transonic pitch change reflecting its legacy of Messerschmitt-inspired tailless aerodynamic design. During one test run to Mach 0.98, it pitched
up so violently that test pilot Robert Rahn blacked out, becoming one of the first pilots to experience sudden g-induced loss-of-consciousness (g-loc). Fortunately, he recovered and returned safely, the battered plane now marred by prominent stress-induced wrinkles, giving it a prunelike appearance.[59] When Grumman entered the transonic swept wing era, it did so by converting its conventional straight wing F9F-5 Panther into a swept wing design, spawning the F9F-6 Cougar. (The use of an identical prefix—"F9F”—indicates just how closely the two aircraft were related.) But the Cougar’s swept wing, midplaced horizontal tail, and thick wing section (inherited from the firmly subsonic Panther) were ill matched. The new Cougar had serious pitch-up and departure characteristics at low and high speeds, forcing redesign of its wing before it could be intro­duced into fleetwide service. Even afterward, however, it retained some unpleasant characteristics, particularly a restricted angle-of-attack range during carrier landing approaches that gave the pilot only a small maneu­ver margin before the Cougar would become unstable. Well aware of the likely outcome of stalling and pitching up in the last seconds of flight prior to "trapping” on a carrier, pilots opted to fly faster, though the safety they gained came at the price of less-precise approaches with greater risk of "wave-offs” (aborted landings) and "bolters” (touching down beyond the cables and having to accelerate back into the air).[60]

Ensuring Longitudinal Control: Transforming the Horizontal TailMcDonnell’s XF-88, a beefy twin-engine jet fighter prototype from the late 1940s, was placed on hold while more powerful engines were developed. When finally ordered into development in the early 1950s as the F-101 Voodoo, it featured a T-tail, a most unwise choice. Acceptable on airliners and transports, the T-tail was anathema for high-perfor­mance jet fighters. The Voodoo experienced serious pitch-up problems, and the cure was less a "fix” than simply a "patch”: McDonnell installed

a stick-kicker that would automatically push the stick forward as angle of attack increased and the Voodoo approached the pitch-up point. Wisely, for their next fighter project (the superlative F4H-1 Phantom II), McDonnell designers lowered the horizontal tail location to the base of the fin, giving it a characteristically distinctive anhedral (droop).[61]

Ensuring Longitudinal Control: Transforming the Horizontal TailBetter yet, however, was placing the horizontal tail below the line of the wing chord, which, in practical terms, typically meant at the base of the rear fuselage, and making it all-moving as well. In 1947, even before the first supersonic flights of the XS-1, NACA Langley researchers had evalu­ated a wind tunnel model of the proposed Bell XS-2 (later X-2) with a low – placed horizontal tail and a ventral fin, though (unfortunately, given its history as related subsequently) Bell completed it with a more conventional layout mirroring the XS-1’s midfin location.[62] The now-classic jet age low, all-moving "stabilator” tail was first incorporated on the North American YF-100A Super Sabre, the first of the "Century series” of American fighters.

The low all-moving tail reflected extensive NACA research dating to the midst of the Second World War. While the all-moving tail surface had been a standard feature of early airplanes such as the German Fokker Eindecker ("Monoplane”) and French Morane Bullet fighters of the "Great War,” the near constant high workload it made for a pilot caused it to fall
from grace, in favor of a fixed stabilizer and movable elevator surface. But by the early 1940s, NACA researchers recognized "its possible advantages as a longitudinal control for flight at high Mach numbers.”[63] Accordingly, researchers at the Langley Memorial Aeronautical Laboratory modi­fied an experimental Curtiss XP-46 fighter on loan from the Army Air Forces by removing its conventional horizontal tail surfaces and replac­ing them with an all-moving tail plane hinged at its aerodynamic cen­ter and controlled by a trailing edge servotab. Initial tests during turns at 200 mph proved disappointing, with pilots finding the all-moving sur­face too sensitive and its control forces too light (and thus dangerous, for they could easily subject the airplane to excessive maneuvering loads) and demanding continuous attention particularly in choppy air. So the XP-46 was modified yet again, this time with a geared, not servotab, con­trol mechanism. If not perfect, the results were much better and more encouraging, with pilots now having the kind of variation in stick force to give them feedback on how effectively they were controlling the air­plane.[64] Recognizing that the all-moving tail could substantially increase longitudinal control authority in the transonic region, NACA research­ers continued their study efforts into the postwar years, encouraged by initial flight-test results of the Bell XS-1, which began approaching higher transonic Mach numbers in the fall of 1946. Though its adjustable horizontal stabilizer with a movable elevator constituted an admittedly interim step on the path to an all-moving surface, the XS-1’s excursions through the speed of sound generated convincing proof that designers could dramatically increase transonic longitudinal control authority via an all-moving tail.[65]

Ensuring Longitudinal Control: Transforming the Horizontal Tail

Tail location—midfin (as in the XS-1 and D-558), at the base of the fin (as with the F-86 and most other jet aircraft), or high (as with the T-tail F-101)—was another significant issue. German wartime research had favored no tail surfaces or, at the other extreme, high T-tails—for example, the DFS 346 supersonic research aircraft under development at war’s end or the proposed Focke-Wulf Ta 183 swept wing jet fighter (which influenced the design of the MiG-15 and early Lavochkin swept wing jet fighters and a proposed British supersonic research aircraft). But the pitch-up problems encountered by the Skyrocket and even the F-86, as angle of attack increased, argued powerfully against such loca­tions. In 1949, coincident with the Air Force and North American begin­ning development of the Sabre 45, a 45-degree swept wing successor to the F-86, Jack D. Brewer and Jacob H. Lichtenstein, two researchers at Langley, undertook a series of studies of tail size, length, and vertical location using the Langley stability tunnel and a model having 45-degree swept wing and tail surfaces. Their research demonstrated that placing a tail well aft of the wing and along the fuselage centerline (as viewed from the side) improved longitudinal stability and control.[66] Building upon their work, Langley researchers William Alford, Jr., and Thomas Pasteur, Jr., ran an investigation in the Langley 7-foot by 10-foot high­speed tunnel to determine aspect ratio and location effects on the lon­gitudinal stability of a swept wing model across the transonic regime from Mach 0.80 to Mach 0.93. "The results,” they subsequently reported in 1953, "indicted that, within the range of variables considered, the most favorable pitching-moment characteristics at a Mach number of 0.90 were obtained by locating the tail below the wing-chord plane.”[67] Compared to this, other changes were inconsequential.

Ensuring Longitudinal Control: Transforming the Horizontal TailFlight tests at Ames in 1952 of a North American YF-86D (an inter­ceptor variant of the F-86) specially modified with a low-placed horizon­tal tail, confirmed the Langley test results. As researchers noted, "The

test airplane, while having essentially the same unstable airplane static pitching moments as another version of this airplane [the F-86A] with an uncontrollable pitch-up, had only a mild pitch-up which was easily con­trollable,” and had a nearly 40-percent increase in stabilizer and elevator effectiveness at transonic speeds.[68] The prototype YF-100 Super Sabre, first flown in May 1953, incorporated the fruits of this research. Next came the Vought XF8U-1 Crusader and the Republic YF-105 Thunderchief, and thereafter a plethora of other types. Aviation had returned full circle to the technology with which powered, controlled flight had begun: back to pivoted all-moving pitch-control surfaces of a kind the Wrights and other pioneers would have immediately recognized and appreciated.

Inertial Coupling: Dangerous Byproduct of High-Speed Design

The progression of aircraft flight speeds from subsonic to transonic and on into the supersonic changed the proportional relationship of wing to fuselage. As speed rose, the ratio of span to fuselage length decreased. At the onset of the subsonic era, the Wright Flyer had a wingspan-to – fuselage length ratio of 1.91. The SPAD XIII fighter of World War I was 1.30. The Second World War’s P-51D decreased to 1.14. Then came the supersonic era: the XS-1 was 0.90. In 1953, the F-100A, lowered the ratio to 0.80, and the F-104A of 1954 cut this in half, to 0.40. The radical X-3 had a remarkably slender wingspan-to-fuselage length ratio of just 0.34: not without reason was it nicknamed the "Stiletto.” But while the dra­matic increase in fuselage length at the expense of span spoke to the need to reduce wing-aspect ratio and increase fuselage fineness ratio to achieve idealized supersonic shaping, any resulting aerodynamic benefit came only at the price of significant performance limitations and risk.

Increasing fuselage length while reducing span dramatically changed the mass distribution of these new designs: whereas earlier airplanes had most of their mass concentrated along the span of their wings, as the wing-fuselage ratio changed from well above 1.0 to well below this figure, the distribution of mass shifted to along the fuselage. Since a long forward fuselage inherently reduces directional stability, and since the small low aspect ratio wings of these airplanes reduced their roll stability, a potentially deadly mix of technical circumstances existed to
produce a major crisis: the onset of transonic and supersonic inertial coupling, also termed roll-coupling.

Inertial Coupling: Dangerous Byproduct of High-Speed DesignWilliam Hewitt Phillips of the NACA’s Langley laboratory had first forecast inertial coupling. His pronouncement sprang from a fortuitous experience while supervising tests of a large XS-1 "falling body” model in the summer of 1947. The model (dropped from a high-flying B-29 over a test range near Langley to assess XS-1 elevator control effectiveness as it approached Mach 1) incorporated a simple autopilot and was intended to rotate slowly as it fell, so as to maintain a "predictable trajectory.”[69] But after the drop, things went rapidly awry. The model experienced violent pitching and rapid rolling "well below” the speed of sound and fell so far from its planned impact point that it literally disappeared from history. But optical observations, coupled with telemetric data, led Phillips to conclude that "some kind of gyroscopic effect” had taken place. Intrigued, he drew upon coursework from Professors Manfred Rauscher and Charles Stark Draper of the Massachusetts Institute of Technology, using the analogy of the coupling dynamics of a rotating rod. He substituted the values obtained from the falling XS-1 model, discovering that "the results clearly showed the possibility of a diver­gent motion. . . . The instability was likely to occur when the values of longitudinal stability and directional stability were markedly differ­ent and when a large amount of the weight was distributed along the fuselage.”[70] Hewitt subsequently published a seminal NACA Technical Note in 1948, which presciently concluded: "Design trends of very high­speed aircraft, which include short wing spans, fuselages of high density, and flight at high altitude, all tend to increase the inertia forces due to rolling in comparison with the aerodynamic restoring forces provided by the longitudinal and directional stabilities. It is therefore desirable to investigate the effects of rolling on the longitudinal and directional stabilities of these aircraft. . . . The rolling motion introduces coupling between the longitudinal and lateral motion of the aircraft.”[71] Out of

this came the expression "inertial coupling” and its more descriptive equivalent, "roll-coupling.” Phillips continued his research on roll-cou­pling and rolling maneuvers in accelerated flight, noting in 1949 that high-speed rolls could generate "exceptionally large” sideslip loads on a vertical fin that might risk structural failure. He concluded: "The provision of adequate directional stability, especially at small angles of sideslip, in order to prevent excessive sideslipping in rolls at high speed is therefore important from structural considerations as well as from the standpoint of providing desirable flying qualities.”[72]

Inertial Coupling: Dangerous Byproduct of High-Speed DesignIn the summer of 1952, as part of an investigation effort studying coupled lateral and longitudinal oscillations, researchers at the NACA’s Pilotless Aircraft Research Division at Wallops Island, VA, fired a series of large rocket-boosted swept wing model airplanes. Spanning over 3 feet, but with a length of nearly 6 feet, they had the general aero­dynamic shape of the D-558-2 as originally conceived: with a slightly shorter vertical fin. These models accelerated to supersonic speed and then, after rocket burnout and separation, glided onward while onboard telemetry instrumentation relayed a continuous stream of key performance and behavior parameters as they decelerated through the speed of sound before diving into the sea. On August 6, 1952, techni­cians launched one equipped with a small pulse rocket to deliberately destabilize it with a timely burst of rocket thrust. After booster burn­out, as the model decelerated below Mach 1, the small nose thruster fired, inducing combined yawing, sideslip, and rolling motions. But instead of damping out, the model swiftly went out of control, as if a replay of the XS-1 falling body test 5 years previously. It rolled, pitched, and yawed until it plunged into the Atlantic, its death throes caught by onboard instrumentation and radioed to a NACA ground station. If dry, the summary words of the resulting test report held ominous import for future flight-testing of full-size piloted aircraft: "From the flight time history of a rocket-propelled model of a representative 35° sweptback wing airplane, it is indicated that coupled longitudinal motions were excited and sustained by pure lateral oscillations. The resulting longitudinal motions had twice the frequency of the lateral oscillations and rapidly developed lift loads of appreciable magnitude. The longitudinal moments are attributed to two sources, aerodynamic

moments due to sideslip and inertial cross-coupling. The roll charac­teristics are indicated to be the predominating influence in the inertial cross-coupling terms.”[73]

Inertial Coupling: Dangerous Byproduct of High-Speed DesignTwo model tests, 5 years apart, had shown that roll coupling was clearly more than a theoretical possibility. Shortly thereafter it turned into an alarming reality when the Bell X-1A, North American YF-100 Super Sabre, and Douglas X-3 entered flight-testing. Each of these encoun­tered it with varying degrees of severity. The first to do so was the Bell X-1A, a longer, more streamlined, and more powerful derivative of the original XS-1.[74] The X-1A arrived at Edwards in early 1953, flew a brief contractor program, and then entered Air Force evaluation in November. On December 12, 1953, test pilot Charles E. "Chuck” Yeager nearly died when it went out of control at Mach 2.44 at nearly 80,000 feet. In the low dynamic pressure ("low q” in engineering parlance) of the upper atmo­sphere, a slight engine thrust misalignment likely caused it to begin a slow left roll. As Yeager attempted to control it, the X-1A rolled rapidly to the right, then violently back to the left, tumbling completely out of control and falling over 50,000 feet before the badly battered Yeager man­aged to regain control. Gliding back to Edwards, he succinctly radioed: "You know, if I’d had a seat, you wouldn’t still see me in this thing.”[75] Afterward, NACA engineers concluded that "lateral stability difficulties were encountered which resulted in uncontrolled rolling motions of the airplane at Mach numbers near 2.0. Analysis indicates that this behav­ior apparently results from a combination of low directional stability

and damping in roll.”[76] The predictions made in Phillips’s 1948 NACA Technical Note had come to life, and even worse would soon follow.

Inertial Coupling: Dangerous Byproduct of High-Speed DesignBy the time of Yeager’s harrowing X-1A flight, the prototype YF-100, having first flown in May 1953, was well into its flight-test program. North American and the Air Force were moving quickly to fulfill ambitious pro­duction plans for this new fighter. Yet all was not well. The prototype Super Sabre had sharply swept wings, a long fuselage, and a small ver­tical fin. While fighter pilots, entranced by its speed, were enthusiastic about the new plane, Air Force test pilots were far less sanguine, noting its lateral-directional stability was "unsatisfactory throughout the entire combat speed range,” with lateral-directional oscillations showing "no tendency to damp at all.”[77] Even so, in the interest of reducing weight and drag, North American actually shrank the size of the vertical fin for the production F-100A, lowering its height, reducing its area and aspect ratio, and increasing its taper ratio. The changes further cut the direc­tional stability of the F-100A, by some estimates as much as half, over the YF-100.[78] The first production F-100As entered service in the late sum­mer of 1954. Inertial coupling now struck with a vengeance. In October and November, two accidents claimed North American’s chief test pilot, George "Wheaties” Welch, and Royal Air Force Air Commodore Geoffrey Stephenson, commander of Britain’s Central Fighter Establishment. Others followed. The accidents resulted in an immediate grounding while the Air Force, North American, and the NACA crafted complementary research programs to analyze and fix the troubled program.[79]

Then, in the midst of the F-100’s travail, inertial coupling struck the Douglas X-3. First flown in October 1952, the X-3 had vestigial straight wings and tail surfaces joined to a missile-like fuselage. Though it was
the most highly streamlined airplane of its time, mediocre engines con­founded hopes it might achieve Mach 2 speeds, and it never flew faster than Mach 1.21, and that only in a dive. The NACA acquired it for research in December 1953, following contractor flights and a brief Air Force eval­uation. On October 27, 1954, during its 10th NACA flight, test pilot Joseph A. Walker initiated an abrupt left aileron roll at Mach 0.92 at 30,000 feet. The X-3 pitched up as it rolled, sideslipping as well. After it returned to stable flight, Walker initiated another left roll at Mach 1.05. This time, it responded even more violently. Sideslip angle exceeded 21 degrees, and it reached -6.7 g during a pitch-down, immediately pitching up to over 7 g. Fortunately, the wild motions subsided, and Walker, like Yeager before him, returned safely to Earth.[80] With the example of the X – 1A, the F-100A, and the X-3, researchers had conclusive proof of a newly emer­gent crisis imperiling the practical exploitation of the high-speed frontier.

Inertial Coupling: Dangerous Byproduct of High-Speed DesignThe F-100A raised the most concern, for it was the first of an entire new class of supersonic fighter aircraft, the "Century series,” with which the United States Air Force and at least some of its allies hoped to reequip. Welch’s F-100A had sideslipped and promptly disintegrated during a diving left roll initiated at Mach 1.5 at 25,000 feet. As Phillips had predicted in 1949, the loads had proven too great for the fin to with­stand (afterward, North American engineers "admitted they had been naive in estimating the effects of reducing the aspect ratio and area of the YF-100 prototype tail”).[81] Curing the F-100’s inertial coupling prob­lems took months of extensive NACA and Air Force flight-testing, much of it very high-risk, coupled with analytical studies by Langley personnel using a Reeves Electronic Analogue Computer (REAC), an early form of a digital analyzer. During one roll at Mach 0.7 (and only using two – thirds of available aileron travel), NACA test pilot A. Scott Crossfield experienced "a large yaw divergence accompanied by a violent pitch – down. . . which subjected the airplane to approximately -4.4g vertical acceleration.”[82] Clearly the F-100A needed significant redesign: the Super

Sabre’s accidents and behavior (and that of the X-3 as well) highlighted that streamlined supersonic aircraft needed greatly increased tail area, coupled with artificial stability and motion damping, to keep sideslip from developing to dangerous values. North American subsequently dramatically increased the size of the F-100’s vertical fin, increased its wingspan by 2 feet (to shift the plane’s center of gravity forward), and incorporated a yaw damper to control sideslip. Though the F-100 sub­sequently became a reliable fighter-bomber (it flew in American service for almost a quarter century and longer in foreign air arms), it remained one that demanded the constant attention and respect of its pilots.[83]

Inertial Coupling: Dangerous Byproduct of High-Speed DesignInertial coupling was not, of course, a byproduct of conceptualizing the swept and delta wings, nor was it limited (as the experience of the XS-1 falling model, X-1A, and X-3 indicated) just to aircraft possessing swept or delta planforms. Rather, it was a byproduct of the revolution in high-speed flight, reflecting the overall change in the parametric rela­tionship between span and length that characterized aircraft design in the jet age. Low aspect ratio straight wing aircraft like the X-3 and the later Lockheed F-104 were severely constrained by the threat of iner­tial coupling, even more than many swept wing aircraft were.[84] But for swept wing and delta designers, inertial coupling became a particular challenge they had to resolve, along with pitch-up. As the low-placed horizontal tail reflected the problem of pitch-up, the increasing size of vertical fins (and the addition of ventral fins and strakes as well) incor­porated on new aircraft such as the Navy’s F8U-1 and the Air Force’s

F-105B (and the twin-fins that followed in the 1970s on aircraft such as the F-14A, F-15A, and F/A-18A) spoke to the serious challenge the iner­tial coupling phenomenon posed to aircraft design. Not visible were such "under the skin” systems as yaw dampers and the strict limitations on abrupt transonic and supersonic rolling taught to pilots transitioning into these and many other first-generation supersonic designs.[85]

Inertial Coupling: Dangerous Byproduct of High-Speed DesignThe story of the first encounters with inertial coupling is a salu­tary, cautionary tale. A key model test had resulted in analysis leading to the issuance of a seminal report but one recognized as such only in retrospect. A half decade after the report’s release, pilots died because the significance of the report for future aircraft design and behavior had been missed. Even within the NACA, recognition of seriousness of reduced transonic and supersonic lateral-directional stability had been slow. When, in August 1953, NACA engineers submitted thoughts for a tentative research plan for an F-100A that the Agency would receive, attention focused on longitudinal pitch-up, assessing its handling qual­ities (particularly its suitability as a gun platform, something seemingly more appropriately done by the Air Force Flight Test Center or the Air Proving Ground at Eglin), and the correlation of flight and wind tun­nel measurements.[86] Even after the experience of the X-1A, F-100A, and X-3, even after all the fixes and training, it is disturbing how inertial coupling stilled claimed the unwary.[87] Over time, the combination of refined design, advances in stability augmentation (and eventually the advent of computer-controlled fly-by-wire flight) would largely render

inertial coupling a curiosity. But for pilots of a certain age—those who remember aircraft such as the X-3, F-100, F-101, F-102, and F-104— the expression "inertial coupling,” like "pitch-up,” will always serve to remind that what is an analytical curiosity in the engineer’s laboratory is a harsh reality in the pilot’s cockpit.

Implementing the Delta Planform

While swept wing adaptation in Europe, Russia, and America followed a generally similar pattern, the delta wing underwent markedly differ­ent international development. Generally, European designers initially emulated the Lippisch approach, resulting in designs with relatively thick wing sections (exemplified by the Avro Vulcan bomber and the "tailed” Gloster Javelin interceptor) that inhibited their ability to operate beyond the transonic. Only after the practical demonstration of Convair’s emerging family of thin-wing delta designs—the XF-92A research air­craft, the F-102 interceptor, the XF2Y-1 experimental naval fighter, the B-58 supersonic bomber, and the F-106 interceptor—did they conceptu­alize more "supersonic friendly” designs, typified by the Swedish Saab J35 Draken ("Dragon”), the British Fairey F. D.2 research airplane, the French Dassault Mirage I (progenitor of the Mirage fighter and bomber family). By the late 1950s, British and French aerodynamicists had so completely "closed” any "delta gap” that might have existed between Europe and America that they were already conceptualizing development of a Mach 2 supersonic transatlantic transport using a shapely "ogee” reflexive delta planform, a study effort that would, a decade later, spawn the Anglo-French Concorde.[88] Not so taken with the pure delta, Soviet designers joined American-like thin delta wings to the low-placed hori­zontal tail, generating advanced MiG and Sukhoi fighters and intercep­tors. These "tailed deltas” (particularly the MiG-21) possessed far better transonic and supersonic turning performance than could be attained by a conventional delta with its high induced drag onset at the increas­ing angles of attack characteristic of hard-maneuvering. (An American equivalent was the Douglas Company’s superlative A4D-1 Skyhawk,
a light attack bomber with maneuvering performance better than most fighters.)

Implementing the Delta PlanformAlthough it is commonly accepted that American delta aircraft owe their inspiration to the work of Lippisch—Convair’s delta aircraft repeatedly being cited as the products of his influence—in fact, they do not.[89] Unlike, say, the swept wing F-86 and B-47, which directly reflected German aerodynamic thought and example, America’s delta wing air­craft reflected indigenous, not foreign, research and inspiration. By the time that Lippisch first met with Allied technical intelligence experts, American aerodynamicists were already advancing along a very differ­ent path than the one he had followed. Jones had already enunciated his thin, sharply swept delta theory and undertaken his first tunnel tests of it. In June 1946—a full year after the German collapse—Convair engi­neers developing the experimental delta XP-92 interceptor had their chance to meet with Lippisch at Wright Field. By then, however, they had already independently decided upon a thin delta planform. "We had heard about Dr. Lippisch’s work and this gave us some moral support,” Convair designer Adolph Burstein recalled, adding: "but not much else. . . . We did not go along with many of his ideas, such as a very thick airfoil.”[90] Burstein and his colleagues arrived at their delta shape by beginning with a 45-degree swept wing, gradually increasing its sweepback angle, and then "filling in” the ever-closing trailing edges, until they arrived at the classic 60-degree triangular delta planform the company incorporated on all its subsequent delta aircraft. With a 6.5 thickness-chord ratio— less than half that of Lippisch’s DM-1—it was an altogether different – looking airplane.[91] Nor was Convair alone in going its own way; Douglas naval aircraft designer Edward Heinemann acknowledged that "At the close of World War II the work with delta planforms accomplished by

Подпись: Lippisch DM-1 glider in the Langley Full Scale Tunnel, 1946. The thick-wing section is readily apparent, as is the oversize vertical fin, both of which rendered the concept unsuitable for transonic flight. NASA.
Implementing the Delta Planform

Dr. Lippisch in Germany became generally known and appreciated,” but that "Extensive wind tunnel tests showed there was no special merit to an equilateral triangle planform—especially those designed with thicker airfoils.”[92]

The chronology of American delta development, and the technical choices and paths followed by American engineers, supports both state­ments. At war’s end, advancing ground forces at Prien, Austria, had dis­covered a thick-wing wooden delta glider, the DM-1, which Lippisch had intended as a low-speed testbed for a proposed supersonic fighter, the P 13. At Army Air Forces’ request, it was shipped back to America in January 1946 for comprehensive testing in the Full-Scale Tunnel at the NACA’s Langley Aeronautical Laboratory. Had the tests gone well,
the possibility existed as that, as the Germans had intended, it might be flown as a glider. But the tunnel tests quickly disabused delta enthu­siasts of these hopes. As the AAF’s Langley liaison officer subsequently reported, the "Initial test results were very disappointing; the lift coef­ficient was low, the drag was high, the directional stability was unsatis­factory, and the craft was considered unsafe for flight tests.”[93]

Implementing the Delta PlanformAfterward, Langley engineers undertook a comprehensive study of the DM-1 configuration, not in the spirit of emulation but rather attempt­ing to find a way to fix it. After giving its wings sharp leading edges, seal­ing all slots and gaps around control surfaces, and removing the thick vertical fin and replacing it with a thin one (relocating the pilot under a streamlined bubble canopy), they had markedly improved its perfor­mance, doubling its lift coefficient, from 0.6 to over 1.2. But it remained an unsatisfactory design, proof enough that the Lippisch concept of del­tas was hardly one that could serve—or did serve—as a veritable template (as has been so often alleged) for the supersonic American, Swedish, and French delta fighters and bombers that flew over the next decade.[94] Subsequently, NACA engineers looked to far thinner and more streamlined configurations that, if not yet as extreme as Robert T. Jones’s original daggerlike concept, were even more amenable to the rigors of transonic and supersonic flight than the generously rounded contours of Lippisch’s thick wings and awkward pilot-enclosing vertical fins. By the beginning of 1947, they were already examining the technical requirements of slender, low aspect ratio delta configurations

Подпись: The Convair XF-92A, the world's first delta jet airplane, at the NACA High-Speed Flight Research Station, now the Dryden Flight Research Center, in 1953. NASA.

to meet emerging military specifications for a Mach 1.5, 60,000-foot bomber interceptor.[95]

First Flight Experiences

Out of this mutually reinforcing climate of thought emerged the world’s first delta jet airplane, the Convair XF-92A, first flown in September 1948. This technology explorer (for despite its "fighter” designation, it was always intended for research purposes) demonstrated the poten­tial of the delta wing and encouraged Convair and Air Force authorities to pursue a delta planform for a future interceptor design. Originally, that design had been the "XP-92,” an impractical barrel-shaped rocket – boosted ramjet with the pilot sitting in a conical nose within the ramjet’s
circular inlet, similar to Rene Leduc’s straight wing air-launched French ramjet designs of the same period. Following its cancellation, work on the XF-92A continued, supporting the Air Force’s "1954 Interceptor” ini­tiative, which Convair hoped to win with, essentially, a bigger and more powerful version of the XF-92A. Aside from greater power, the intercep­tor would have to have a nose radar and thus "cheek” inlets rather than the simple Pitot nose inlet of the smaller testbed. The "1954 Interceptor” eventually became two: the "interim” Mach 1+ F-102 Delta Dagger and the "ultimate” Mach 2+ F-106 Delta Dart.

First Flight ExperiencesThe XF-92A contributed markedly to delta understanding but was far from a trouble-free design. Deltas evinced a variety of quirks and per­formance deficiencies, some of which they shared with their swept wing brethren. Deltas manifested the same tendency to persistent combined lat­eral-directional Dutch roll motions, as well as pitch-up, from Mach num­ber effects as they entered further into the transonic regime. The extreme sweep of their wings accentuated spanwise flow tendencies, making wing fences almost mandatory in all cases. Their high angle-of-attack ("hi AoA”) landing approaches highlighted potentially serious control deficiencies, for, unlike a conventional fighter, the delta lacked separate elevators and aile­rons. It relied instead on elevons—combined elevator-ailerons—for pitch and roll control. Thus, with the stick pulled back on final approach, the nose would rise, and if the plane encountered a sudden gust that induced a rolling motion, the pilot might lack sufficient remaining reserve "travel” from the deflected elevon to correct for the rolling motion. Further com­plicating landing approaches and turn performance was the delta’s inher­ently high-induced drag as it turned or was at higher angles of attack. Deltas needed lots of power. The high-induced drag of the delta led to a rapid bleeding off of airspeed during turns and thus inhibited its holding altitude during turning maneuvers. Tests with the little XF-92A in 1953 by NACA research pilot Scott Crossfield indicated that as much as 3,000 feet of altitude could be lost trying to maintain constant speed in a turn­ing maneuver—and this was after it had been modified to incorporate an afterburner for greater power. "Every time I took off in that plane I held my brief until I reached sufficient altitude to use the ejection seat,” Crossfield recollected later. "The pilot never really flew that airplane, he corralled it.”[96]

All together, the NACA completed 25 flights in the XF-92A before a land­ing gear collapse brought its research career to an end.

First Flight ExperiencesTests of the XF-92A foreshadowed similar challenges with the next Convair delta, the prototype YF-102 interceptor. The YF-102 is infamous for having suffered from such high transonic drag rise that it could not accelerate through the speed of sound, a discovery that led, as Air Force test pilot Lt. Col. Frank K. "Pete” Everest recalled, to "surprise and con­cern. . . . The National Advisory Committee for Aeronautics had claimed all along that the airplane would not go supersonic, and now their predic­tions came true.”[97] (How the YF-102 was transformed from embarrass­ing failure to operational success, thanks to Richard Whitcomb’s "area rule” theory and its practical application to the F-102 design, is covered elsewhere in this volume in a case study on Whitcomb’s contributions to aeronautics, by historian Jeremy Kinney.) But more than reshaping of its fuselage was required before the F-102 became a success. Instead, its wing underwent fundamental aerodynamic redesign reflecting the second stage in American delta development and its third stage overall.