Category Escaping the Bonds of Earth

“EIGHT DAYS OR BUST”

Although Gemini V, the first to carry and utilise fuel cells for electrical power, had long been planned to fly for seven or even eight days, the success of its predecessor and the performance of Jim McDivitt and Ed White had emboldened NASA to move up their estimates for the first lunar landing from 1970 to 1969 and, perhaps, said Joe Shea, as early as mid-1968. Both Gemini IV astronauts would remain very much part of the unfolding action: White was named within weeks to the backup command slot for Gemini VII, an assignment rapidly followed by the coveted senior pilot’s seat on the maiden Apollo voyage. McDivitt, too, would go on to great things: commanding Apollo 9, a complex engineering and rendezvous flight to pave the way for the first Moon landing. He would even be offered, but would refuse, the chance to walk on the lunar surface himself.

First, though, came the adulation. After an initial Houston reception, they headed for Chicago, where a million people greeted them and showered them in tickertape along State Street and Michigan Avenue. This was followed, in Washington, DC, by another parade down Pennsylvania Avenue to the Capitol, receptions in the Senate, meetings with foreign diplomats and even a free trip to Paris to upstage the appearance of Yuri Gagarin and a mockup of Vostok 1 at 1965’s Air Show. It is unknown to see such scenes as tickertape parades for astronauts today and, perhaps, the only ones in the foreseeable future may be for the men and women who return to the Moon or become the first to tread the blood-red plains of Mars.

In the Sixties, however, every mission was heroic. Moreover, despite the appalling workload and the inevitable strain the astronaut business placed on marriages and families, every man who left Earth’s atmosphere was a fully-fledged hero. Not for nothing did Gerry and Sylvia Anderson name their five Thunderbird heroes after five of the heroes of the Mercury Seven: Alan, Virgil, John, Scott and Gordon. For one of those heroes, Gordo Cooper, and his rookie pilot, Pete Conrad, the reality in the build-up to their mission was one of exhausting 16-hour workdays, plus weekends, and a tight schedule to launch on 1 August 1965, eight weeks after McDivitt and White splashed down. Cooper and Conrad and their backups, Neil Armstrong and Elliot See, had only been training since 8 February, giving them less than six months to prepare for the longest mission yet tried. “We realised they needed more time,” wrote Deke Slayton. “I went to see George Mueller to ask him for help and he delayed the launch by two weeks.”

Despite the pressure, Cooper and Conrad found time to give some thought to names for their spacecraft, even though NASA had officially barred them from doing so. Due to its pioneering nature, the two men wanted to call Gemini V ‘The Conestoga’, after one of the broad-wheeled covered wagons used during the United States’ push westwards in the 18th and 19th centuries. Their crew patch, in turn, would depict one such wagon, emblazoned with the legend ‘Eight Days or Bust’. This was quickly vetoed by senior managers, who felt it suggested a flight of less than eight days would constitute a failure, and Conrad’s alternative idea – ‘Lady Bird’ – was similarly nixed because it happened to be the nickname of the then-First Lady, wife of President Johnson. Its possible misinterpretation as an insult could provoke unwelcome controversy which NASA could ill-afford. The astronauts, however, would not be put off and Cooper pleaded successfully with Jim Webb to approve the Conestoga-wagon patch, although the administrator greatly disliked the idea. The duality of the word ‘bust’ as denoting both a lack of success and the female breasts did not help matters, either. . .

Preparations for Gemini V had already seen Conrad gain, then lose, the chance to make a spacewalk. According to a January 1964 plan, the Gemini IV pilot would depressurise the cabin, open the hatch and stand on his seat, after which an actual ‘egress’ would be performed on Gemini V (Conrad’s mission), a transfer to the back of the spacecraft and retrieval of data packages on Gemini VI and work with the Agena-D target vehicle on subsequent flights. Following the Voskhod 2 success, however, plans for a full egress were accelerated and granted to Ed White. The result: instead of ‘Eight Days or Bust’, Gemini V would come to be described by Cooper and Conrad as ‘Eight Days in a Garbage Can’; they would simply ‘exist’ for much of their time aloft, to demonstrate that human beings could survive for at least the minimum amount of time needed to get to the Moon and back. (The maximum timespan for a lunar mission, some 14 days, would be an unwelcome endurance slog earmarked for the Gemini VII crew.)

Yet the Conestoga mission did have its share of interesting gadgets: it would be the first Gemini to run on fuel cells, would carry the first production rendezvous radar and was scheduled to include exercises with a long-awaited Rendezvous Evaluation Pod (REP). Originally, it was also intended to fly the newer, longer-life OAMS thrusters, although these were ready ahead of schedule and incorporated into Gemini IV. Only weeks after Cooper, Conrad, Armstrong and See began training, on 1 April 1965 fabrication of the Gemini V capsule was completed by McDonnell,

“EIGHT DAYS OR BUST”

A tired and heavily-bearded Conrad (left) and Cooper aboard the recovery ship after the flight.

 

Подпись: 270 Pushing the Envelope

tested throughout May in the altitude chamber and finally delivered to Cape Kennedy on 19 June. Elsewhere, GLV-5 – the Titan booster assigned to launch the mission – was finished in Baltimore, accepted by the Air Force and its two stages were in Florida before the end of May. Installation on Pad 19 followed on 7 June, the day of McDivitt and White’s splashdown, and Gemini V was mounted atop the Titan U on 7 July. Five days later, the last chance for an EVA on the mission and, indeed, on Geminis VI and VII, was rejected by NASA Headquarters. There seemed little point in repeating what White had already done and, further, Cooper and Conrad, not wishing to be encumbered by their space suits for eight days, had campaigned vigorously for greater comfort in orbit by asking to wear helmets, goggles and oxygen masks. The launch of Gemini V was scheduled for 19 August.

It would be a false start. Thunderstorms ominously approached the Cape, rainfall was copious and a lightning strike caused the spacecraft’s computer to quiver. The latter, provided by IBM, had caused concern on Gemini IV and, this time around, had been fitted with a manual bypass switch to ensure that the pilots would not be left helpless again. The attempt was scrubbed with barely ten minutes remaining on the countdown clock and efforts to recycle for another try on 21 August got underway. On this second attempt, no problems were encountered. Aboard Gemini V, Cooper turned to Conrad. “You ready, rookie?’’ Conrad, white as a sheet, replied that he was nervous. Surely the decorated test pilot who had flown every supersonic jet the Navy owned wasn’t scared? Conrad milked the silence in the cabin for a few seconds, then burst out laughing. “Gotcha!” he said with his trademark toothy grin. “Light this son-of-a-bitch and let’s go for a ride!’’ And ride they did. At 8:59:59 am, Cooper and Conrad were on their way.

Ascent was problematic when noticeable pogo effects in the booster jarred the men for 13 seconds, but smoothed out when the second stage ignited and were minimal for the remainder of the climb. Six minutes after launch, as office workers across America snoozed away their Saturday morning, Gemini V perfectly entered a 163-349 km orbit. Nancy Conrad wrote that her late husband compared the instant of liftoff to “a bomb going off under him, then a shake, rattle and roll like a ’55 Buick blasting down a bumpy gravel road – louder than hell’’.

Hitting orbit made Cooper the first man to chalk up two Earth-circling missions. (Gus Grissom, of course, had piloted a suborbital flight on Liberty Bell 7, before commanding the orbital Gemini 3.) However, Gemini V would shortly encounter problems. The flight plan called for the deployment of the 34.5 kg REP, nicknamed ‘The Little Rascal’, from the spacecraft’s adaptor section, after which Cooper would execute a rendezvous test, homing in on its radar beacon and flashing lights. Before the REP could even be released, as Gemini V neared the end of its first orbit, Conrad reported, matter-of-factly, that the pressure in the fuel cells was dropping rapidly from its normal 58.6-bar level. An oxygen supply heater element, it seemed, had failed. Nonetheless, as they passed over Africa on their second orbit, Cooper yawed the spacecraft 90 degrees to the right and, at 11:07 am, explosive charges ejected the REP at a velocity of some 1.5 m/sec. Next, the flight plan called for Gemini V to manoeuvre to a point 10 km below and 22.5 km behind the REP, although much of this work was subsequently abandoned. However, Chris Kraft’s ground team was becoming increasingly concerned as the fuel cell pressures continued to decline and when a pressure of 12.4 bars was reached this was insufficient to operate the radar, radio and computer. Kraft had little option but to tell the astronauts to cancel their activities with the pod.

It seemed likely that a return to Earth would be effected and Kraft ordered four Air Force aircraft to move into recovery positions in the Pacific for a possible splashdown some 800 km north-east of Hawaii. A naval destroyer and an oiler in the region were also ordered to stand by. Keenly aware of the situation, Cooper radioed that a decision needed to be made over whether to abort the mission or power down Gemini V’s systems and continue, to which Kraft told him to shut off as much as he could. All corrective instructions proved fruitless: neither the automatic or manual controls for the fuel cell’s oxygen tank heater would function. Nor could the heater itself, located in the adaptor section, be accessed by the crew. Cooper and Conrad even manoeuvred their spacecraft such that the Sun’s rays illuminated the adaptor, in the hope that it might stir the system back to life. It was all in vain.

By now, most of their on-board equipment – radar, radio, computer and even some of the environmental controls – had been shut down and, as Gemini V swept over the Atlantic on its third orbital pass, there was much speculation that a re-entry would have to be attempted before the end of the sixth circuit, since its flight track thereafter would take it away from the Pacific recovery area. Then, as the astronauts passed within range of the Tananarive tracking station in the Malagasy Republic, off the east coast of Africa, Cooper reported that pressures were holding at around 8.6 bars, suggesting, Kraft observed, that “the rate of decrease is decreasing”. As he spoke, the oxygen pressures dropped still lower, to just 6.5 bars, and fears were high that if they declined much further, Gemini V would need its backup batteries to support another one and a half orbits and provide power for re-entry and splashdown. The astronauts were asked to switch off one of the fuel cells to help the system and as they entered their sixth orbit the pressures levelled-out at 4.9 bars.

Capcom Jim McDivitt asked Cooper for his opinion on going through another day under the circumstances. “We might as well try it,’’ replied Cooper, but Kraft remained undecided. After weighing all available options, including the otherwise satisfactory performance of the cabin pressure, oxygen flow and suit temperatures, together with the prestige to be lost if the mission had to be aborted, he and his control team emerged satisfied that oxygen pressures had stabilised at 4.9 bars. If there were no more drops, Gemini V would be fine to remain in orbit for a ‘drifting flight’, staying aloft just long enough to reach the primary recovery zone in the Atlantic, sometime after its 18th orbit. Admittedly, with barely 11 amps of power, only a few of the mission’s 17 experiments could be performed, but Kraft felt ‘‘we were in reasonably good shape. . . we had the minimum we needed and there was a chance the problem might straighten itself out’’. As Cooper and Conrad hurtled over Hawaii on their fifth orbit, he issued a ‘go’ for the mission to proceed.

With the reduced power levels, the REP, which kept the spacecraft company up until its eighth orbit, was useless for any rendezvous activities. ‘‘That thing’s right with us,’’ Cooper told Mission Control during their sixth circuit of Earth. ‘‘It has been all along – right out in back of us.’’ Two orbits later, Conrad turned Gemini V a full 360 degrees, to find that the pod had re-entered the atmosphere to destruction. Nonetheless, Gemini V’s radar did successfully receive ranging data from the REP for some 43 minutes.

As the mission entered its second day, circumstances improved and oxygen pressures climbed. “The morning headline,” Kraft radioed the astronauts on 22 August, referring to a newspaper, “says your flight may splash down in the Pacific on the sixth orbit.” Having by now more than tripled that number of orbits, Conrad replied that he was “sorry” to disappoint the media. Despite the loss of the REP, on their third day aloft Cooper conducted four manoeuvres to close an imaginary ‘gap’ between his spacecraft and the orbit of a phantom Agena-D target. This ‘alternate’ rendezvous had been devised by the astronaut office’s incumbent expert, Buzz Aldrin. Cooper fired off a short burst from the aft-mounted OAMS thrusters to lower Gemini V’s apogee by about 22 km, then triggered a forward burn to raise its perigee by some 18 km and finally yawed the spacecraft to move it onto the same orbital plane as the imaginary target. One final manoeuvre to raise his apogee placed Gemini V in a co-elliptical orbit with the phantom Agena. Were it a ‘real’ target, he would then have been able to guide his spacecraft through a precise rendezvous. Such exercises would prove vital for Gemini VI, which was scheduled to hunt down a ‘real’ Agena-D in October 1965, and one of the greatest learning experiences, said Chris Kraft, ‘‘is being able to pick a point in space, seek it out and find it’’.

Notwithstanding the successes, the glitches continued. On 25 August, two of the eight small OAMS thrusters jammed, requiring Cooper to rely more heavily on their larger siblings and expend considerably more propellant than anticipated. It was at around this time that Gemini V broke Valeri Bykovsky’s five-day endurance record and Mission Control asked Cooper if he wanted to execute ‘‘a couple of rolls and a loop’’ to celebrate; the laconic command pilot, however, declined, saying he could not spare the fuel and, besides, ‘‘all we have been doing all day is rolling and rolling!’’ When the record of 119 hours and six minutes was hit, Kraft blurted out a single word: ‘‘Zap!’’ Gordo Cooper, with an additional 34 hours from Faith 7 under his belt, was now by far the world’s most flown spaceman. His response when told of the milestone, though, was hardly historic: ‘‘At last, huh?’’

The dramatic reduction of available propellant made the last few days little more than an endurance run. Kraft told the astronauts to limit their OAMS usage as much as possible and many of their remaining photographic targets – which required them to manoeuvre the spacecraft into optimum orientations – had to be curtailed. Still, a range of high-quality imagery was acquired. The hand-held 70 mm Hasselblad flew again to obtain photographs of selected land and near-shore areas and, of its 253 images, some two-thirds proved useful in post-mission terrain studies. These included panoramas of the south-western United States, the Bahamas, parts of south-western Africa, Tibet, India, China and Australia. Images of the Zagros Mountains revealed greater detail than was present in the official Geological Map of Iran. Cooper and Conrad also returned pictures of meteorological structures – including the eye of Hurricane Doreen, brewing to the east of Hawaii – together with atmospheric ‘airglow’. In addition, they took pictures of the Milky Way, the zodiacal light and selected star fields. Other targets included two precisely-timed Minuteman

missile launches and infrared imagery of volcanoes, land masses and rocket blasts.

The scientific nature of many of these experiments did not detract – particularly in the eyes of the Soviet media – from the presence of a number of military-sponsored investigations. Cooper and Conrad’s flight path carried them over North Vietnam 16 times, as well as 40 times over China and 11 times over Cuba, prompting the Soviet Defence Ministry’s Red Star newspaper to claim that they were undertaking a reconnaissance mission. The situation was not helped by President Johnson’s decision, whilst the crew was in orbit, to fund a major $1.5 billion Air Force space station effort, known as the Manned Orbiting Laboratory (MOL). Among the actual military experiments undertaken by Gemini V were observations of the Minuteman plume and irradiance studies of celestial and terrestrial backgrounds, together with tests of the astronauts’ visual acuity in space to follow up on reports that Cooper had made after his Faith 7 mission. Large rectangular gypsum marks had been laid in fields near Laredo, Texas, and Carnarvon, Australia, although weather conditions made only the former site visible.

Cardiovascular experiments performed during the mission would reveal that both men lost more calcium than the Gemini IV crew, although principal investigator Pauline Beery Mack expressed reluctance to predict a ‘trend’, since “a form of physiological adaptation may occur in longer spaceflight”. Medically, Chuck Berry’s main concerns were fatigue and his advice was that they get as much sleep as possible. ‘‘I try to,’’ yawned Conrad at one stage, ‘‘but you guys keep giving us something to do!’’ All in all, they managed between five and seven hours’ sleep at a time and expressed little dissatisfaction with Gemini V’s on-board fare: bite-sized, freeze-dried chunks of spaghetti and meatballs, chicken sandwiches and peanut cubes, rehydratable with a water pistol. An accident with a packet of shrimp, though, caused a minor problem when it filled the cabin with little pink blobs. Conrad even tried singing, out of key, to Jim McDivitt at one point.

Years later, Conrad would recall that the eight-day marathon was ‘‘the longest thing I ever had to do in my life’’. He and Cooper had spent the better part of six months training together, so ‘‘didn’t have any new sea stories to swap with one another… there wasn’t a whole lot of conversation going on up there’’. Nancy Conrad would recall her late husband describing how the confined cabin caused his knees to bother him – their sockets felt as if they had gone dry – and that he would have gone ‘‘bananas’’ if asked to stay aloft any longer. (Ironically, on two future missions, Conrad would stay aloft for much, much longer. . . but on those occasions, his tasks would include a couple of meandering trots around the lunar surface and floating inside a voluminous space station.) He found it hard to sleep, hard to get comfortable and the failures meant he and Cooper spent long periods simply floating with nothing to do. After the flight, he told Tom Stafford that he wished he had taken a book, and this gem of experience would be noted and taken by the crew assigned to fly the 14-day mission.

Nancy Conrad described Cooper’s irritation at losing so much of his mission. He was far from thrilled that the two main tasks for Gemini V, rendezvous and long – duration flight, were becoming little more than ‘‘learning-curve opportunities’’ and suggested throwing an on-board telescope in the Cape Kennedy dumpster when it twice refused to work. Later, when the spacecraft was on minimum power and the astronauts were still expected to keep up with a full schedule, Cooper snapped “You guys oughtta take a second look at that!” As for physical activity, he grimaced that his only exercise was chewing gum and wiping his face with a cleansing towel.

On the ground, Deke Slayton was concerned that such an attitude would not help Cooper’s reputation with NASA brass. Indeed, Gemini V would be his final spaceflight and, although he would later complain bitterly about ‘losing’ the chance to command an Apollo mission, some within the astronaut corps would feel that Cooper’s performance and strap-it-on-and-go outlook had harmed his career. Tom Stafford was one of them. ‘‘Gordo… had a fairly casual attitude towards training,’’ he wrote, ‘‘operating on the assumption that he could show up, kick the tyres and go, the way he did with aircraft and fast cars.’’

To spice matters up still further, worries about the fuel cells continued to plague Gemini V’s final days. Their process of generating electricity by mixing hydrogen and oxygen was producing 20 per cent too much water, Kraft told Conrad, and there were fears that the spacecraft was running out of storage space. This water excess might back up into the cells and knock them out entirely. In order to create as little additional water as possible, the astronauts powered down the capsule from 44 to just 15 amps and on 26 August Kraft even considered bringing them home 24 hours early, on their 107th orbit. However, by the following day, the water problem abated, largely due to the crew drinking more than their usual quota and urinating it into space, and a full-length mission seemed assured.

Eitherway, they had long since surpassed Bykovsky’s Vostok 5 record. In fact, by the time Cooper and Conrad splashed down, they would have exceeded the Soviets on several fronts: nine manned missions to the Reds’ eight, a total of 642 man-hours in space to their 507 and some 120 orbits on a single mission to their 81. At last, after eight years in the shadows – first Sputnik, then Gagarin, Tereshkova, Voskhod 1 and Leonov – the United States was pulling ahead into the fast lane of the space race. When it seemed that Gemini V might come home a day early and miss the scheduled Sunday 29 August return date, mission controllers in Houston even played the song ‘Never on Sunday’, together with some Dixieland jazz.

The astronauts also had the opportunity on the last day of the mission to talk to an ‘aquanaut’, Aurora 7 veteran Scott Carpenter, who was on detached duty to the Navy. Carpenter, who had broken his arm in a motorcycle accident a year before and been medically grounded by NASA, was partway through a 45-day expedition in command of Sealab II, an underwater laboratory on the ocean floor, just off the coast of La Jolla, California. The Sealab effort, conceived jointly by the Navy and the University of California’s Scripps Institution of Oceanography, sought to discover the capacity of men to live and work effectively at depth. In doing so, Carpenter became the first person to place ‘astronaut’ and ‘aquanaut’ on his career resume. Yet, unlike Cooper and Conrad, his chances of returning to space were non­existent. He had not impressed senior NASA managers with Aurora 7 and, indeed, the partial success of an operation to repair the injury to his arm meant he would remain grounded anyway. He resigned from NASA in early 1967.

The music, the chat with Carpenter and even Conrad’s dubious singing did little

to detract from the uncomfortable conditions aboard the capsule. As they drifted, even with coolant pipes in their suits turned off, the two men grew cold and began shivering. Stars drifting past the windows proved so disorientating that they put covers up. Sleep was difficult. Chuck Berry had wired Conrad with a pneumatic belt, a blood-pressure-like cuff, around each thigh, which automatically inflated for two minutes of every six throughout the entire mission. The idea was that, by impeding blood flow, it forced the heart to pump harder and gain its much-needed exercise. Berry felt that if Conrad came through Gemini V in better physical shape than Cooper, who did not wear the belt, a solution may have been found for ‘orthostatic hypotension’, the feelings of lightheadedness and fainting felt by some astronauts after splashdown.

For the two astronauts, that splashdown could not come soon enough. By landing day, 29 August, their capsule had become cluttered with rubbish, including the litter of freeze-dried shrimp, which had escaped earlier in the mission. The appearance of Hurricane Betsy over the prime recovery zone prompted the Weather Bureau to recommend bringing Gemini V down early and Flight Director Gene Kranz agreed to direct the Lake Champlain to a new recovery spot. At 7:27:43 am, Cooper fired the first, second, third, then fourth OAMS retrorockets, then gazed out of his window. It felt, he said later, as if he and Conrad were sitting ‘‘in the middle of a fire’’. Since it was orbital nighttime, they had no horizon and were entirely reliant upon the cabin instruments to control re-entry. In fact, Gemini V remained under instrument control until they passed into morning over Mississippi.

Cooper held the spacecraft at full lift until it reached an altitude of 120 km, then tilted it into a bank of 53 degrees; whereupon, realising that they were too high and might overshoot the splashdown point, he slewed 90 degrees to the left to create more drag and trim the error. Although experiencing a dynamic load of 7.5 G after eight days of weightlessness, the astronauts did not, as some had feared, black out. The parachute descent was smooth. No oscillations were evident and the 7:55:13 am splashdown, though 170 km short of the planning spot, was soft. As would later be determined, the computer had been incorrect in indicating that they would overshoot. A missing decimal point in a piece of uplinked data had omitted to allow for Earth’s rotation in the time between retrofire and splashdown. In fact, Cooper’s efforts to correct the false overshoot had progressively drawn them short of the recovery zone. ‘‘It’s only our second try at controlling re-entry,’’ admitted planning and analysis officer Howard Tindall. ‘‘We’ll prove yet that it can be done.’’

Gemini V had lasted seven days, 22 hours, 55 minutes and 14 seconds from its Pad 19 launch to hitting the waves of the western Atlantic and the crew was safely aboard the Lake Champlain by 9:30 am. With the exception of the failed REP rendezvous, and one experiment meant to photograph the target, all of Cooper and Conrad’s objectives had been successfully met. Yet more success came when Chuck Berry realised that, despite the days of inactivity with little exercise aboard the capsule, the astronauts were physiologically ‘back to normal’ by the end of August, clearing the way for Frank Borman and Jim Lovell to attempt a 14-day endurance run on Gemini VII in early 1966. First, though, Wally Schirra and Tom Stafford would fly Gemini VI for one or two days in October and complete the first rendezvous with an

Agena-D target. The mission – or, rather, missions – that would follow would snatch victory from the jaws of defeat and set aside another obstacle on the path to the Moon. But not before suffering a major setback of its own.

ROCKET ARMCHAIRS AND FIREPROOF PANTS

One saving grace of the crisis was that Scott had the presence of mind, before undocking, to switch over command of the Agena to Mission Control. The result: the Gemini VIII-Agena Target Vehicle (GATV-VIII) could – and would – be reused during a subsequent mission. Four months later, Gemini X’s John Young and Mike Collins would fly part of their own rendezvous, docking and spacewalking extravaganza with the Agena. In the days after Armstrong and Scott splashed down, the rocket’s main engine was fired ten times, its various systems were vigorously tested and it successfully received and executed more than 5,400 commands. By 26 March, its electrical power had been exhausted and it could no longer be effectively controlled, but by this stage it had been raised into a higher orbit to permit inspection by the Gemini X crew.

Before Young and Collins could complete their mission, however, came Gemini IX; stricken, it seemed, by bad luck since the dull, chill February day when its prime crew lost their lives in St Louis. Days after the deaths of Elliot See and Charlie Bassett, their backups, Tom Stafford and Gene Cernan, were appointed to replace them. With a launch scheduled for mid-May, Stafford would record the shortest turnaround between flights of any space traveller thus far, blasting off just five months after his Gemini VI-A splashdown. Newly-promoted to become the ‘new’ Gemini IX backups were Jim Lovell and Buzz Aldrin, who, by following Deke Slayton’s three-flight crew rotation system, were now in prime position to fly the Gemini XII mission in November 1966.

Gemini XII, the last flight in the series, was originally to be the preserve of Stafford and Cernan in their capacity as See and Bassett’s backups. In fact, in his autobiography, Cernan recalled trips to McDonnell’s plant in St Louis to inspect and train on the Gemini IX capsule. . . yet finding himself, in rare moments of spare time, drifting down the line of almost-complete spacecraft to take a wistful look at the skeletal form of Gemini XII, his and Stafford’s ship. Years later, Cernan would still recall his desire to know every switch, every circuit breaker, every instrument, every bolt and rivet, inside the Gemini before he and Stafford took this engineering marvel into the heavens.

The prime and backup crews for Gemini IX were announced in early November 1965 and, indeed, with Stafford still busy preparing for his mission with Wally Schirra, Cernan was forced to train alone with See and Bassett until early the following year. His role not only shadowed Bassett, but prepared himself for the possibility, however remote, of actually flying the mission and conducting a lengthy EVA wearing an Air Force contraption known as the Astronaut Manoeuvring Unit (AMU). It looked, Cernan wrote, “like a massive suitcase” that was “so big that it would be carried aloft folded up like a lawn chair and attached within the rear of the Gemini”. (In fact, the Air Force’s project officer for the AMU, Major Ed Givens, was selected by NASA as an astronaut candidate in April 1966.)

Having manoeuvred himself over to the device, Bassett would “slip onto a small bicycle-type seat, strap on the silver-white box and glide off into space, manoeuvring with controls mounted on the armrests’’. Sounding very much like something from a Buck Rogers episode, the AMU had evolved through seven years of developmental work, with its focus on military tasks associated with a Pentagon-sponsored space station called the Manned Orbiting Laboratory. “The possibility of using it to send someone scooting off to disable an enemy satellite,’’ wrote Cernan, “wasn’t mentioned in public because we weren’t supposed to be thinking about the militarisation of space.’’

For NASA’s purposes, however, the 75 kg AMU provided an essential tool in understanding how effectively astronauts could work and manoeuvre outside the confines of their spacecraft. When he was named to Gemini IX, Bassett was tasked with an EVA that would span at least one 90-minute circuit of the globe and would be able to control his movements and direction by means of 12 hydrogen peroxide thrusters. The AMU was also equipped with fuel tanks, lights, oxygen supplies, storage batteries and radio and telemetry systems. The device would be controlled by knobs on the end of the AMU’s twin arms – a left-hand one providing direction of motion, a right-hand one for attitude – although, for safety, Bassett would remain attached to Gemini IX by a 45 m tether throughout the spacewalk.

Undoubtedly raising Cernan’s hopes for his own mission was the possibility that, if Bassett’s excursion went without a hitch, plans were afoot for a more autonomous AMU spacewalk on Gemini XII, perhaps untethered. In the days before enormous water tanks became the norm for EVA training, Bassett and Cernan spent much of their time physically conditioning themselves. Both men recognised that vast reserves of strength and stamina would be required to handle the demands of a spacewalk encased inside a bulky pressurised suit and resorted to lengthy spells in the gym, games of handball and hundreds of press-ups. “Before long,’’ Cernan wrote, “we grew Popeye-sized forearms.’’

Their suits needed to be somewhat different from that worn by Ed White on Gemini IV, partly in recognition of the demands of the AMU, as well as to provide additional comfort and protection. The new ensembles included a white cotton long – john-type undergarment for biosensors, a nylon ‘comfort’ layer, a Dacron-Teflon link net to maintain the suit’s shape and several layers of aluminised Mylar and nylon for thermal and micrometeoroid protection. Guarding them from the searing hydrogen peroxide plumes from the AMU (one of which would jet directly between

Bassett’s legs!) were the heat-resistant ‘trousers’ of the suit. These were composed of 11 layers of aluminised H-film and fibreglass, topped by a metallic fabric woven from fibres of the alloy Chromel R. One day during training, Bassett and Cernan watched as a technician charred the material with a blowtorch for five minutes, telling them that despite the intense temperature of the AMU’s exhausts, they would remain comfortable within their suits.

As Cernan continued his training as Bassett’s understudy, the pair – indeed, the foursome, if one also counted See and Stafford – spent so much time working together than a relationship akin to family developed. Despite their intense focus on Gemini IX, Stafford and Cernan undoubtedly looked forward to their own rendezvous, docking and spacewalking adventure with their own Gemini, their own Agena and their own AMU, towards the end of 1966. All that changed on the morning of 28 February, when it became clear that Cernan’s first journey into space would come much sooner, more unexpectedly and more horrifyingly, than he could have ever imagined or wished.

OUTER SPACE TREATY

On the evening that the Apollo 1 crew lost their lives, the astronaut office in Houston was unusually quiet. At one point, only Al Bean was on duty and it was he who received the first word from Cape Kennedy of the fire. Several other astronauts were at Downey, California, running through simulations and practice for their missions… and a select delegation was at the White House in Washington, DC. There, veteran astronauts Scott Carpenter, Gordo Cooper, Jim Lovell, Neil Armstrong and Dick Gordon witnessed the signing by President Johnson of a document popularly called ‘The Outer Space Treaty’. Four decades later, the document has around a hundred signatories and a further two dozen who are partway through their ratification of it.

Officially, it is known as ‘The Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including The Moon and Other Celestial Bodies’. Essentially, the document forms the basis for the earliest international space law and on the very day that Grissom, White and Chaffee died, it was opened for signing by the United States, Great Britain and the Soviet Union. Its 17 articles decree that signatories will refrain from the placement of nuclear weapons or weapons of mass destruction into Earth orbit, onto the Moon or onto any other celestial body. The treaty explicitly states that the Moon and other celestial bodies are to be used for peaceful purposes and forbids weapons-testing and military exercises or implacements on them. Moreover, it denies signatories the right to ‘claim’ a celestial resource, such as the Moon, as its own and declares all to be “province of mankind’’. It also assures the safe and cordial return of any astronauts or cosmonauts who make an unexpected landing within the borders of another nation.

The astronauts liked to call it the ‘‘non-staking-a-claim treaty’’ and as the afternoon wore into evening, they mingled with guests at the event, including ambassadors from the Soviet Union (Anatoli Dobrynin), Great Britain (Patrick Dean) and Austria (Kurt Walheim, later Secretary-General of the United Nations). In his biography of Armstrong, James Hansen noted the astronaut’s recollection that the event ended at 6:45 pm and that, with the exception of Carpenter, the NASA delegation returned to the Georgetown Inn on Wisconsin Avenue. When they got to their rooms, they were greeted by flashing red lights on their answer machines. Something terrible had happened in Florida. A difficult year lay ahead.

CHANGED PLANS

Gordo Cooper and Pete Conrad had flown the equivalent of a minimum-duration lunar flight and, indeed, one of them would tread its dusty surface in a little over four years’ time. Apart from stiff joints, heavy beards, a tendency to itch and an aroma, like that of McDivitt and White, which seemed somehow ‘different’ from everyone else on the recovery ship, they were fine. Cooper, whose heart averaged 70 beats per minute, had come through Gemini V in better shape than Faith 7. After eight days in a half-sitting, half-lying position, both men managed to do some deep-knee bends aboard the recovery helicopter, hopped onto the deck of the Lake Champlain without assistance and walked without wobbling.

They had, NASA flight surgeons determined, come through the mission less fatigued than the Gemini IV crew. This was at least partly because Cooper and Conrad got around six hours’ sleep per night during the early portion of their flight. However, their weight loss was perplexing: Cooper had lost 3.4 kg and Conrad 3.8 kg whilst aloft. They had, admittedly, only eaten 2,000 calories per day, rather than the scheduled 2,700, and drank their quotas of water, but both regained the lost weight within days. Still, neither exhibited signs of orthostatic hypotension and Chuck Berry asserted that ‘‘we’ve qualified man to go to the Moon’’.

Those plans received an abrupt setback on 25 October 1965.

When Wally Schirra and Tom Stafford were assigned to Gemini VI, they were told by Deke Slayton that their two-day mission would feature the world’s first rendezvous with a Lockheed-built Agena-D target. Their backups, Gemini 3 fliers Gus Grissom and John Young, had been picked because Slayton ‘‘wanted a veteran backup crew to help with training’’. In his autobiography, Stafford would recall that Young sat actively through simulations with them, whereas Grissom was often absent, racing cars or boats. After three years working on Gemini, Grissom now had his sights set on commanding the first Apollo mission. Following Gemini VI would come Gemini VII, sometime early in 1966, flown by Frank Borman and Jim Lovell and backed-up by Ed White and Mike Collins. The decision to fly the first rendezvous mission ahead of the long-duration 14-day flight had come about because of ongoing Agena problems; Charles Mathews wanted assurances that, if anything went wrong on Gemini VI, there would be enough time to resolve it before resuming rendezvous practice from Gemini VIII onwards.

The first Gemini-Agena Target Vehicle (GATV), numbered ‘5001’, was shipped to Cape Kennedy in May 1965, purely as a non-flying test article, and three months later its successor – ‘5002’ – was officially earmarked for Schirra and Stafford’s mission. However, doubts over its reliability lingered. Its main engine, some felt, could not be trusted to execute manoeuvres with a docked Gemini and, although Schirra lobbied for it to go ahead, opposition within NASA to firing it was strong.

CHANGED PLANS

Jim Lovell (seated left) and Frank Borman study plans before the mission. Backup pilot Mike Collins stands at left.

 

Next, Schirra pushed for a firing of the Agena’s less powerful secondary propulsion system, although this was not initially incorporated into the Gemini VI flight plan. To be fair, rendezvous techniques were very much in their infancy in 1965, as demonstrated by the unsuccessful attempt of Jim McDivitt to station-keep with the second stage of his Titan II. Buzz Aldrin, however, was a rendezvous specialist, having completed a doctorate in the field before becoming an astronaut, and he joined forces with Dean Grimm of NASA’s Flight Crew Support Division to plan a so-called ‘concentric rendezvous’ technique for Gemini-Agena missions.

Their plan was for the target to be launched, atop its Convair-built Atlas rocket, into a 298 km circular orbit, after which Schirra and Stafford would be despatched into a lower, ‘faster’, elliptical orbit. ‘‘Two hundred and seventy degrees behind the Agena,’’ wrote Stafford, ‘‘you’d make a series of manoeuvres that would eventually raise the orbit of the Gemini to a circular one below the Agena. Then you’d glide up below the Agena on the fourth revolution. At that time the crew would make a series of manoeuvres to an intercept trajectory, then break to station-keeping and docking.’’ This docking would occur over the Indian Ocean, some six hours into the mission, after which Schirra and Stafford would remain linked for seven hours and return to Earth following their battery-restricted two-day flight. The astronauts wanted to relight the Agena’s engine whilst docked, but NASA managers vetoed it as too ambitious.

During their training at McDonnell’s St Louis plant during the last half of 1965, the astronauts practiced manoeuvres again and again, plotting them on boards. In total, they did more than 50 practice runs and spent many hours rehearsing the actual docking exercise with the Agena-D in a Houston trainer. ‘‘Housed in a six – story building,’’ wrote Schirra, ‘‘it consisted of a full-scale Gemini cockpit and the docking adaptor of the Agena. They were two separate vehicles in an air-drive system that moved back and forth free of friction. We exerted control in the cockpit with small thrusters, identical to those on the spacecraft. We could go up and down, left and right, back and forth. The target could be manoeuvred in those planes as well, though it was inert. It would move if we pushed against it, just as we assumed the Agena would do in space.’’

On one such training session, Schirra hosted Vice-President Hubert Humphrey in the pilot’s seat. The vice-president asked Schirra if their voices could be heard from outside the trainer. When Schirra replied that, no, it was sound-proofed, Humphrey asked if Schirra minded him having a ten-minute nap. When Humphrey awoke, he asked Schirra to tell him what had happened so that he could tell the people outside. ‘‘I was a fan of Hubert Humphrey from that day on,’’ wrote Schirra.

Although barred from naming Gemini VI, Schirra sketched a design for a patch which he and Stafford could wear. It featured the constellation of Orion, which, navigationally, was to play an important part in the rendezvous. ‘‘The patch would be six-sided,’’ Schirra wrote, ‘‘since six was the number of our mission. Orion also appears in the first six hours of right ascension in astronomical terms, a quarter of the way around the celestial sphere.’’

In anticipation of this dramatic mission, processing of Gemini VI’s flight hardware ran smoothly. In April 1965, its launch vehicle, GLV-VI, became the first Titan to be erected in the new west cell at Martin’s vertical testing facility in Baltimore, Maryland. The rocket’s two stages arrived in Florida at the beginning of August and were placed into storage. Schirra and Stafford’s spacecraft arrived at about the same time and was hoisted atop a timber tower for electronic compatibility testing with GATV-5002. Such exercises would later become standard practice in readying Gemini-Agena missions. It was the last Gemini to run on batteries, thus limiting Schirra and Stafford to no more than 48 hours in space, although, by September, NASA was pushing for just one day if all objectives were completed. Even Gemini VI’s experiments – two rendezvous tests (in orbital daytime and nighttime), one medical, three photographic and one passive – were considered secondary to the proximity operations with the Agena. Said Schirra: “On my mission, we couldn’t afford to play with experiments. Rendezvous [was] significant enough!’’

However, so much reliance was being placed on the radar, the inertial guidance platform and the computer that Grimm and Aldrin found the pilot’s role was seriously impaired; if these gadgets failed, wrote Barton Hacker and James Grimwood, so too would the whole mission. Grimm persuaded McDonnell managers to rig up a device which could allow the astronauts to simulate trajectories, orbital insertion and spacecraft-to-Agena rendezvous paths. As a result, Schirra and Stafford were able to participate in no fewer than 50 simulations, conferring with Aldrin on techniques and procedures. Stafford would also recall the admirable efforts of‘Mr Mac’ himself – James McDonnell, founder of the aerospace giant which bore his name – who, upon learning that the astronauts needed more time on the training computers, complied. ‘‘Mr Mac was always behind the programme,’’ Stafford wrote. In fact, he and Schirra invited McDonnell to dinner on the night before the Agena’s, and their own, planned liftoff.

Early on 25 October, out at the Cape’s Pad 14, a team from General Dynamics oversaw the final hours of the Atlas-Agena countdown. The Atlas booster, tipped with the slender, pencil-like Agena, was scheduled to fly at precisely 10:00 am. Meanwhile, Al Shepard, by now the chief astronaut, woke the Gemini VI crew and joined them for breakfast and suiting-up. Schirra, struggling to give up smoking, lit up a Marlborough during the ride to Pad 19. He felt, wrote Stafford, ‘‘he could survive a twenty-four-hour flight without getting the shakes’’. One and a half kilometres to the south, General Dynamics launch manager Thomas O’Malley pressed the firing button for the Atlas-Agena at 10:00 am and the first half of the GTA-VI mission was, it seemed, underway. The countdown had gone without a hitch and, with 140 flights behind it since 1959, the performance of the Agena was unquestioned. The plan was for it to separate from the Atlas high above the Atlantic, then fire its own 7,200 kg-thrust engine over Ascension Island to boost itself into orbit. The complex orchestra of synchronised countdowns would culminate at 11:41 am with Schirra and Stafford’s own liftoff to initiate the rendezvous. Then, things began to go wrong.

The Agena apparently separated from the Atlas, but seemed to wobble, despite the efforts of its attitude controls to stabilise it. Right on time, downlinked telemetry confirmed that its engine had indeed ignited. . . and then nothing more was heard. It

CHANGED PLANS

Tom Stafford (standing) and Wally Schirra suit-up.

had reached an altitude of some 230 km and was 872 km downrange of Cape Kennedy. Fourteen minutes after launch, it should have appeared to tracking radars in Bermuda, but was nowhere to be seen; except, that is, for what appeared to be five large fragments. Aboard Gemini VI, the astronauts, fully-suited, aboard a fully – fuelled rocket and ready to go, were puzzled. “Maybe it’s the tracking station,” Schirra surmised. “Let’s wait for Ascension Island.’’ As time dragged on, their countdown was held at T-42 minutes, but no sign of the Agena was forthcoming. Ascension Island saw nothing. “No joy, no joy,’’ came an equally dismal report from the Carnarvon station in Australia and NASA’s public affairs officer Paul Haney was forced to tell listeners at 10:54 am that the target vehicle was almost certainly lost. The Gemini VI launch was scrubbed.

In fact, problems had become apparent very soon after the Atlas-Agena left its pad. At 10:06 am, just six minutes into its ascent, Jerome Hammack at the Pad 14 blockhouse was convinced that something was wrong. So too was the Air Force officer in charge of the launch. Although early analysis of the partial telemetry data gave little inkling of what had happened, an explosion seemed the most plausible explanation. “Later investigation,’’ wrote Tom Stafford, “concluded that the Agena had exploded, thanks to an oxidiser feed sequence that had been changed.’’

In Houston, Flight Director Chris Kraft, together with Bob Gilruth and George Low, surveyed the damage. It was clear that if a rendezvous mission was to take place at all, a delay of several weeks simply to identify the cause of the accident would be unavoidable. “And if it turns out to be a major design failure in the Agena,’’ Time magazine drearily told its readers, “the Gemini programme is in deep trouble.’’ Critics argued that the Agena, with a satisfactory track record as a missile, had been extensively modified for its Gemini role and many of these modifications had never been tested in space. A disappointed Schirra and Stafford were quietly extracted from their capsule, to be told by Al Shepard: “Boys, what we need is a good party.’’ It was the perfect answer, to cheer everyone up, so the three men, together with Grissom and Young, headed off into town.

“For a day of so,’’ wrote Deke Slayton, “we thought about recycling Agena 5001, the ground test bird that hadn’t ever come up to specs.’’ However, a lengthy investigation into what went wrong with the 5002 target would still need to be carried out, the results of which would not be clear for weeks. Moreover, a new Agena would not be ready until early 1966. A perfect alternative, however, was on the horizon. Immediately after the Agena’s loss, Frank Borman overheard a conversation between McDonnell officials Walter Burke and John Yardley: the former suggested launching Gemini VII as Schirra and Stafford’s ‘new’ rendezvous target. A study of sending Geminis up in quick succession had been done months earlier and seemed an ideal option, but for one detail. Burke sketched his idea onto the back of an envelope, but Borman doubted the practicality of installing an inflatable cone onto the end of Gemini VII to permit a physical docking. Moreover, George Mueller and Charles Mathews dismissed the entire idea, since it would require the launch of both Geminis within an impossibly tight two-week period.

Other managers thought it could be done. Joseph Verlander and Jack Albert proposed stacking a Titan II and placing it into storage until another had been

assembled. The Titan’s engine contractor, Aerojet-General, had stipulated that the vehicle must remain upright, but this could be achieved with a Sikorsky S-64 Skycrane, after which the entire rocket could be kept on the Cape’s disused Pad 20. Immediately after the first Gemini’s launch from Pad 19, the second Titan stack could be moved into position and sent aloft, conceivably, within five to seven days. The plan, however, held little appeal and received little enthusiastic response, with most attention focused on swapping the 3,553 kg Gemini VI for the 3,670 kg Gemini VII, thereby making good of a bad situation by at least using the Titan II combination already on the pad to fly Borman and Lovell’s 14-day mission.

In the next few days, as this was discussed in the higher echelons of NASA management, it became evident that if the two spacecraft were swapped, the earliest that Borman and Lovell could be launched would be 3 December. However, if the Gemini VII spacecraft were to prove too heavy for the GLV-VI Titan, a delay until around 8 December would become necessary to erect the more powerful GLV-VII. It was then envisaged to launch Schirra and Stafford to perform their rendezvous mission with another Agena sometime in February or early March 1966.

As these plans crystallised, Burke and Yardley posed their joint-flight idea to Bob Gilruth and George Low, who could find few technical obstacles, with the exception, perhaps, that the Gemini tracking network might struggle to handle two missions simultaneously. Even Mathews, when presented with the option, could find few problems, although Chris Kraft’s initial response was that they were out of their minds and it could not be done. Then, having second thoughts, he asked his flight controllers for their opinions, and the most that they could object to was that the Gemini tracking network might struggle to handle two missions. Kraft called his deputy, Sigurd Sjoberg, to discuss the possibility further with the Flight Crew Operations Directorate, headed by Deke Slayton. News filtered down, eventually, to Schirra and Stafford, who heartily endorsed it.

The prospects for Burke and Yardley’s plan steadily brightened when it became clear that the heavy Gemini VII – which, after all, was intended to support a mission seven times longer than Gemini VI – could not be lofted into orbit by Schirra and Stafford’s Titan: it simply was not powerful enough to do the job. Yet the question of tracking two vehicles at the same time remained. Then, another possibility was aired. Could the tracking network handle the joint mission if Gemini VII were regarded as a passive target for Gemini VI? Borman and Lovell would launch first, aboard Gemini VII, and control of their flight would proceed normally as the Gemini VI vehicle was prepared to fly.

As soon as controllers were sure that Gemini VII was operating satisfactorily, they would turn their attention to sending up Gemini VI; in the meantime, Borman and Lovell’s flight would be treated like a Mercury mission, wrote Deke Slayton, “where the telemetry came to Mission Control by teletype, letting the active rendezvous craft have the real-time channels that were available’’. This mode would continue until ‘Gemini VI-A’ – so named to distinguish it from the original, Agena – rendezvousing Gemini VI mission – had completed its tasks and returned to Earth. After Schirra and Stafford’s splashdown, Borman and Lovell would again become the focus of the tracking network.

Before NASA Headquarters had even come to a decision, the rumour mill had already informed the press, some of whom reported the possibility of a dual-Gemini spectacular. On 27 October, barely two days after the Agena failure, Jim Webb, Hugh Dryden, Bob Seamans and other senior managers discussed the idea and George Mueller asked Bob Gilruth to confirm that it would work. The answer was unanimously in the affirmative and Webb issued a proposal for the joint flight to the White House. He informed President Johnson that, barring serious damage to Pad 19 after the Gemini VII launch, Schirra and Stafford’s Titan could be installed, checked out and flown within days to rendezvous with Borman and Lovell. Johnson, residing at his ranch in Austin, Texas, approved the plan on 28 October and his press secretary announced it would fly in January 1966. At NASA, however, December 1965 was considered more desirable.

As October turned to November, preparations gathered pace. Aerojet-General set to work implementing steps by which, contrary to its stipulation, the Titans could be handled in a horizontal position, whilst the Air Force destacked GLV-VI from the pad and placed it in bonded storage under plastic covers at the Satellite Checkout Facility. On 29 October, Gemini VII’s heavy-lift Titan was erected on Pad 19. Guenter Wendt’s first reaction when he saw the short, nine-day Gemini VI-A pad- preparation schedule, was “Oh, man, you are crazy!’’ The Gemini VI-A spacecraft, meanwhile, was secured in a building on Merritt Island. Although Schirra and Stafford’s mission would essentially not change, that of Borman and Lovell was slightly adjusted to circularise its orbit and mimic the Agena’s flight path as closely as possible. Elsewhere, the Goddard Space Flight Center was busy setting up and altering tracking station layouts to enable simultaneous voice communications with both capsules.

At one point, ideas were even banded around for an EVA, in which Lovell and Stafford would spacewalk to each other’s Geminis and land in a different craft. However, Borman had little interest in such capers. His target was a 14-day mission and he had no desire to do anything that would compromise it. Also, he wished to use the new ‘soft’ suits that could be doffed in flight. If a spacewalk were to be added to the flight plan, he and Lovell would have to wear conventional space suits, which would make a 14-day mission an even greater chore. In any case, for Lovell and Stafford to exchange places they would have to detach and reconnect their life – support hoses in a vacuum, leaving them with nothing but their backup oxygen supplies for a while. The bottom line for Borman was that whilst an external transfer might have made great headlines, ‘‘one little slip could have lost the farm’’. Coupled with the fact that Stafford, as one of the tallest of the New Nine, sometimes had difficulty egressing from the capsule during ground tests, the decision was taken to eliminate EVA from the joint mission.

THE SUBSTITUTE

Cernan’s grandparents emigrated to America shortly before the outbreak of the First World War; on his mother’s side, they were Czechs from a Bohemian town south of Prague, while on his father’s side were Slovak peasantry from a place close to the Polish border. Their children, Rose Cihlar and Andrew Cernan, would produce the child who would someday gaze down on Earth through the faceplate of a space suit, would see the sheer grandeur of the lunar landscape and would become one of only a handful of men to go prospecting in the mountains of the Moon.

Eugene Andrew Cernan, a self-described ‘‘second-generation American of Czech and Slovak descent’’, was born in Chicago, Illinois, on 14 March 1934. As a young boy, he learned from his father how machinery worked, how to plant tomatoes, how to hammer a nail straight into a board and how to repair a toilet; all of which instilled in him an ethos ‘‘to always do my best at whatever I put my hand to’’. In high school, that ethos led him to play basketball, baseball and football, for which he was even offered scholarships, but eventually he headed to Purdue University in 1952 to read electrical engineering.

Four years later, Cernan graduated and was commissioned a naval reservist, reporting for duty aboard the aircraft carrier Saipan. After initial flight training, he received his wings of gold as a naval aviator in November 1957 and gained his first experience of flying jets aboard the F-9F Panther. He was subsequently assigned to Miramar Naval Air Station in San Diego and attached to Attack Squadron VA-126, during which time he performed his first carrier landing aboard the aircraft carrier Ranger, flying the A-4 Skyhawk. Then, in November 1958, Cernan participated in his first cruise of the western Pacific, flying Skyhawks from the Shangri-La aircraft carrier, when, ‘‘armed to the teeth and ready for a fight’’, he frequently encountered Chinese MiG fighters in the Straits of Formosa.

Shortly thereafter, the Mercury Seven were introduced to the world and Cernan heard about, and for the first time wondered about, the role of these new ‘astronauts’. In his autobiography, he noted that he met just two of NASA’s requirements – age and degree relevance – and had little of their experience and no test-piloting credentials. ‘‘By the time I earned those kind of credentials,” he wrote, ‘‘the pioneering in space would be over.’’ Still, the germ of a new interest, to become a test pilot and fly rockets, implanted itself in the young aviator’s brain.

In the early summer of 1961, now married to Barbara Atchley, Cernan was approaching the end of his five-year commitment to the Navy when he was offered the opportunity to attend the service’s postgraduate school for a master’s degree in aeronautical engineering. It offered him a route into test pilot school. When NASA selected its second group of astronauts in September 1962 Cernan knew that, although he held the right educational credentials, becoming a test pilot was still years away. Ultimately, however, the decision was made for him when one of his superiors recommended him to NASA for its third astronaut class.

As 1963 drew to a close, and by now the father of a baby daughter, Tracy, whose initials he would one day etch into the lunar dust at the valley of Taurus-Littrow, Cernan was repeatedly summoned to an unending cycle of physical and psychological evaluations and interviews by the space agency. Like so many others before him, he checked into Houston’s Rice Hotel under the assumed name of‘Max Peck’ and sat, ‘‘like a prisoner before the parole board’’, at an interview with such famous men as Al Shepard, Wally Schirra and Deke Slayton. The questions were awkward. ‘‘Someone asked how many times I had flown over 50,000 feet,’’ Cernan wrote. ‘‘Hell, for an attack pilot like me, who had spent his life below 500 feet, that was halfway to space!’’ How to turn the question to his advantage? He flipped it around, telling them that he had flown very low and ‘‘if you’re going to land on the Moon, you gotta get close sometime’’.

He was also getting close to actual selection, as friends began calling to enquire as to why FBI agents had visited them with questions about Cernan’s character, his background, his military record, his educational record, his parking tickets and his disciplinary records. At the same time, he was close to completing his master’s thesis, focusing on the use of hydrogen as a propulsion system for high-energy rockets. Then, just a few weeks before John Kennedy’s assassination, he received the telephone call from Deke Slayton that would truly change his life. Little did he know that one of his Navy buddies, Ron Evans, rejected by NASA on this occasion, would himself be hired in 1966 and the two of them would someday travel to the Moon together.

Cernan’s first two years as an astronaut were spent mired in technical assignments… and, despite being just one of a much larger gaggle of prospective spacegoing pilots, he and his colleagues still benefitted from the Life magazine deal, which nicely supplemented their military salaries. During the early Gemini flights, he occupied the ‘Tanks’ console in Mission Control, overseeing pressurisation and other data for the Titan II’s fuel tanks. Then, one day towards the end of 1965, a technician tapped on his office door and told Cernan that Slayton wanted him to get fitted out for a space suit. The reason was inescapable: a flight assignment, surely, was just around the corner.

On 8 November, it was official: Cernan and Stafford would support Elliot See and

Charlie Bassett, with an expectation that they could then rotate into the prime crew slot for the Gemini XII mission. Four months later, just promoted to lieutenant- commander by the Navy, Cernan had a new assignment. He and Stafford were now the Gemini IX prime crew and it would be Cernan, not Bassett, who would evaluate the AMU rocket armchair during one of the trickiest and most hazardous spacewalks ever attempted.

FALL FROM HEAVEN

On 27 April 1967, an unusual communique was issued by the Soviet news agency, Tass. Days earlier, Vladimir Komarov – veteran of Voskhod 1 and the first cosmonaut to make two spaceflights – had been launched into orbit aboard the new Soyuz spacecraft. Within hours, however, euphoria had vanished into tragedy. In a handful of sentences, carefully crafted by the secretary of the Central Committee of the Communist Party, Dmitri Ustinov, it was revealed that Komarov’s ship had ‘‘descended with speed’’ from orbit, ‘‘the result of a shroud line twisting’’. The result: ‘‘the premature death of the outstanding cosmonaut’’. Little more would be known in the western world for nearly three decades and only recently would details begin to trickle out. They would uncover a harrowing tragedy still shrouded in myth, mystery and rumour.

Soyuz was the brainchild of Sergei Korolev, the famous ‘Chief Designer’ of early Soviet spacecraft and rockets, with the original intention that it would support a series of lunar missions to rival the United States’ Apollo effort. When it became increasingly clear that neither the Soyuz, nor an enormous booster rocket needed to reach the Moon, called the ‘N-1’, would be able to beat the Americans, the Soviet paradigm shifted to near-Earth missions: in 1971, they would establish the world’s first space station in orbit. Soyuz would provide a ferry for missions which, by the end of the Seventies, would be routinely spending many months aloft. Four decades later, its basic design remains operational and, heavily modified, continues to transport cosmonauts and astronauts from a variety of nations to and from the International Space Station.

In his 1988 book about the early Soviet space programme, Phillip Clark traced the history of its development back to a three-part ‘Soyuz complex’ – a manned craft, a dry rocket block and a propellant-carrying tanker – which Korolev envisaged in the

Yuri Gagarin, Yevgeni Khrunov, Vladimir Komarov, Alexei Yeliseyev and Valeri Bykovsky during training for the Soyuz 1/2 joint mission. Note the EVA suits worn by Khrunov and Yeliseyev, providing clear evidence that an extravehicular transfer between the two spacecraft was probably planned.

early Sixties could be assembled in orbit for circumlunar missions. The first part, known as ‘Soyuz-A’, was closest in appearance to the spacecraft which actually flew. Measuring 7.7 m long, it comprised three sections: a cylindrical orbital module, a bell-shaped descent module to house the crew positions and a cylindrical instrument module for manoeuvring equipment, propellant and electrical systems. According to Korolev’s early blueprints, Soyuz-A weighed around 6,450 kg, but unlike the eventual version it was not fitted with solar panels.

Supporting Soyuz-A were the ‘dry’ Soyuz-B rocket block and the propellant­carrying Soyuz-V tanker. Clark has hinted that a typical flight profile would have begun with the launch of a Soyuz-B, followed, at 24-hour intervals, by up to four Soyuz-Vs, which would dock, deliver their propellant loads, then separate. When the Soyuz-B had been fully fuelled, a manned Soyuz-A would be launched to dock onto the rocket block. ‘‘Mastering rendezvous and docking operations in Earth orbit may have been one of the primary objectives of the Soyuz complex,’’ wrote Asif Siddiqi, ‘‘but the incorporation of five consecutive dockings in Earth orbit to carry out a circumlunar mission was purely because of a lack of rocket-lifting power in the Soviet space programme.’’ Nonetheless, the sheer ‘complexity’ of the Soyuz complex seems to have foreshadowed its restructuring sometime in 1964 and effected a postponement of its maiden voyage until at least 1966. It was as a result of this setback, Clark explained, that the stopgap Voskhod effort was ultimately born.

When Voskhod began with such apparent promise – the world’s first three-man cosmonaut crew, then the first-ever spacewalk – it surprised many in the western world, among them NASA’s astronauts, when nothing more was heard from the Soviets until April 1967. “They hadn’t flown in over two years,’’ wrote Deke Slayton, “which nobody could understand… Some people were beginning to say there wasn’t really a race to the Moon, and on the evidence you had to admit that possibility.” It was Korolev’s successor, Vasili Mishin, who spearheaded the abandonment of Voskhod, which many within the Soviet space programme felt was a diversion of resources from the more versatile Soyuz. “Given what we know about Voskhod,’’ added Slayton, “it was the right decision.’’

By October 1969, seven manned Soyuz spacecraft would have rocketed into orbit. However, a key physical difference between these missions and the original Soyuz-A concept was that they employed a pair of rectangular solar panels, mounted on the instrument module, to generate electrical power. The total surface area of these wing-like appendages was 14 m2, each measuring 3.6 m long and 1.9 m wide. The remainder of the craft’s design was strikingly similar to Soyuz-A: a spheroid orbital module, 2.65 m long and 2.25 m wide, atop the beehive-shaped descent module, itself 2.2 m long and 2.3 m wide at its base. Beneath the descent module was the cylindrical instrument module, 2.3 m long and 2.3 m wide. In total, Soyuz was somewhat larger than Apollo’s command module, yet smaller than the combined command and service module.

Its propulsion system, designated ‘KTDU-35’, consisted of a pair of engines operating from the same fuel and oxidiser supply. The primary engine had a specific impulse of some 2,750 m/sec, equivalent to around 280 seconds’ burn time, and a thrust of 417 kg, with early reports speculating that the propulsion system was capable of lifting Soyuz to an altitude of 1,300 km. This led Clark to suggest that a propellant load of 755 kg would have been required. Propellants took the form of unsymmetrical dimethyl hydrazine and an oxidiser of nitric acid, loaded in tanks on the instrument module. Clark speculated that, for the first few Soyuz missions at least, a lower-than-full propellant supply of around 500 kg was probably carried.

Like Vostok and Voskhod before it, the spacecraft and its three-stage rocket – an uprated version of Korolev’s Little Seven, including four tapering boosters strapped to its central core – were typically delivered to the launch pad horizontally aboard a railcar. The Soyuz’ own propellants were fully loaded before attachment to the rocket’s third stage, after which a payload shroud was installed and, following rollout, the entire combination was tilted into an upright position. Four cradling arms, nicknamed ‘the tulip’, supported the rocket at its base and a pair of towering gantries provided pre-launch servicing access. Cosmonauts entered the spacecraft through its orbital module and dropped down into their seats in the descent module.

Yet the development of this complex spacecraft had been mired in technical and managerial problems since the death of Sergei Korolev in January 1966. Indeed, only days before Soyuz 1 was launched, engineers are said to have reported no fewer than 200 design problems to party leaders, all of which were overruled by the political pressure of getting a cosmonaut back into space. Even Vladimir Komarov, the man who would fly Soyuz 1, is reputed to have said one night in March 1967 that he would not – could not – turn down the assignment, even though he knew the spacecraft was imperfect and his chances of returning alive were slim. His reason: Yuri Gagarin, the first man in space and the Soviet Union’s most treasured hero, was Komarov’s backup. When asked by Gagarin’s KGB friend Venyamin Russayev why he could not simply resign from Soyuz 1, Komarov’s response was simple. “If I don’t make this flight, they’ll send the backup pilot instead,’’ he said slowly. “That’s Yura, and he’ll die instead of me. We’ve got to take care of him.’’

Russayev was so concerned by Komarov’s admission that he spoke to one of his own superiors, Konstantin Makharov, whose department dealt with spaceflight matters relating to personnel. Makharov told him that he intended “to do something’’ and asked Russayev to pass on a letter to Ivan Fadyekin, the head of Department Three, who directed him instead to a close personal friend of Leonid Brezhnev himself, a KGB man named Georgi Tsinev. The letter consisted of a covering note from a team of the cosmonauts, led by Gagarin, together with a ten – page document detailing all 200 problems with Soyuz. “While reading the letter,’’ Russayev was quoted by Jamie Doran and Piers Bizony as saying, “Tsinev looked at me, gauging my reactions to see if I’d read it or not.’’ It seemed to Russayev that Tsinev knew of Soyuz’ inadequacies, but was not interested in the details. “He was glaring at me very intently,’’ Russayev continued, “watching me like a hawk, and suddenly he asked, ‘How would you like a promotion up to my department?’ He even offered me a better office.’’’ Russayev carefully declined the offer and Tsinev kept the document. . . which was never seen again. Makharov was fired, without a pension; Fadyekin was demoted simply for reading the document; and the hapless Russayev was stripped of all space-related responsibilities. ‘‘I kept my head down like a hermit for the next ten years,’’ he said later.

Against this backdrop, Soyuz’ problems had become almost chronic, with difficulties involving its Igla docking system, its simulators, its space suits, its hatches, its parachutes and its environmental controls. At one stage, early in its development, over 2,000 defects awaited resolution. Further, a series of unmanned Soyuz test flights under the ‘Cosmos’ cover name suffered troubles of their own. Phillip Clark noted that, as the break in Soviet manned launches stretched through 1965 and 1966, it became ‘‘almost a sport’’ among analysts to find evidence that a future crewed spacecraft was undergoing trials. Certainly, the flight of Cosmos 133 on 28 November 1966 and that of Cosmos 140 in early February of the following year were strongly suggestive of bearing some link with Soyuz. The first suffered a malfunctioning attitude-control system, which caused rapid fuel consumption and unanticipated spinning. An inaccurate retrofire and the likelihood that it would land in China eventually forced flight controllers to issue a self-destruct command to Cosmos 133. It exploded early on 30 November.

Two months later, Cosmos 140 suffered similar attitude and fuel problems, but at least remained controllable. . . for a while. Its control system malfunctioned during retrofire, producing a steeper-than-intended re-entry which burned a 300 mm hole into the heat shield. The only reason its parachutes successfully deployed was because of this burn-through; otherwise, they would have failed… an ominous harbinger of what would befall Komarov in April. Clearly, a Cosmos 140-type event would have doomed a human occupant, but the descent module separated successfully, parachuted to Earth and crashed through the ice of the frozen Aral Sea. It was retrieved by divers in 10 m of water and, astonishingly, the results of its mission were deemed “good enough” for Komarov to take the helm of a future flight.

In his autobiography, Alexei Leonov remarked that the Cosmos 140 burn – through had been caused by a flawed design feature which was slightly different to that on a manned Soyuz and admitted that “there was no chance of the fault recurring”. Still, today, it seems ludicrous to have even contemplated a manned mission with such unpromising test results and unforgiving hardware. Political pressure seems to have been the overriding impetus driving Soyuz’ schedule. One Soviet heat shield engineer, Viktor Yevsikov, hinted in 1982 that “some launches were made almost exclusively for propaganda purposes. . . the management knew that the vehicle had not been completely debugged: more time was needed to make it operational, but the Communist Party ordered the launch despite the fact that preliminary launches had revealed faults in the co-ordination, thermal control and parachute systems’’. The situation was so bad, admitted Yevsikov, that Vasili Mishin himself refused to sign the endorsement papers permitting Soyuz 1 to fly. He felt it was unready.

Mishin, despite being an excellent mathematician and fast-thinking engineer, was no Korolev. He had none of his predecessor’s stature or clout and was not renowned for his diplomatic skills. “Lacking the political instincts of, say, a Wernher von Braun or a Sergei Korolev,’’ wrote Asif Siddiqi, “he suffered dearly. Some would argue that so did the Soviet space programme in the coming years.’’ Nonetheless, with little opposition, Mishin was named Chief Designer in May 1966 and, although he quickly asserted himself, his insistence on filling the cosmonaut corps with non­pilot engineers from the OKB-1 design bureau to fly the early Soyuz missions infuriated Nikolai Kamanin. In his diary, the latter fumed that Mishin placed no value in six years’ worth of experience of his command’s training of cosmonauts to fly space missions. Kamanin considered it absurd that Mishin wanted to prepare civilian engineers for Soyuz command positions, with no pilot training, no parachute experience, no medical screening and no centrifuge practice. Eventually, under pressure from Dmitri Ustinov, Mishin was forced in July 1966 to accept pilot- cosmonauts for Soyuz command positions, with OKB-1 engineers filling support roles. It was only the first of many stand-offs between he and Kamanin which would place their relationship at a very low ebb.

Mishin’s desire to fly civilians into space had been shared by Sergei Korolev and, intermittently in the early Sixties, a few OKB-1 engineers had passed preliminary screening, but were never seriously considered by the Soviet Air Force. When eight military cosmonauts began training for the first Soyuz missions in September 1965, Korolev entrusted one of his engineers to explore the possibility of forming a parallel group of civilians. Eleven candidates passed initial tests at the Institute of Biomedical Problems and several months later, on 23 May 1966, Mishin signed an official order to establish the first non-military cosmonaut group. Candidates Sergei Anokhin, Vladimir Bugrov, Gennadi Dolgopolov, Georgi Grechko, Valeri Kubasov, Oleg Makarov, Vladislav Volkov and Alexei Yeliseyev seemed to have little hope of actually flying into space and the nomenclature used to describe them – ‘cosmonaut – testers’ – seemed to support the assumption that they would be of limited use.

Despite his doubts, Kamanin was finally appeased when Grechko, Kubasov and Volkov passed tests at the Air Force’s Central Scientific-Research Aviation Hospital and arrived at the cosmonauts’ training centre, Zvezdny Gorodok, on 5 September. Within two months, another pair, Yeliseyev and Makarov, had also arrived. All five, wrote Siddiqi, ‘‘were accomplished engineers’’, Grechko having worked on fuelling Korolev’s R-7s and Makarov having been involved in Vostok, Voskhod and Soyuz development. Unfortunately, Anokhin, Bugrov and Dolgopolov did not pass the Air Force’s screening and were never considered for positions on the early Soyuz missions.

For the others, however, a seat on a spaceflight seemed only months away. Military pilot Vladimir Komarov had long been pointed at Soyuz 1, owing to his expertise, but Mishin, naturally, wanted two civilian engineers on the three-man Soyuz 2 crew. Nikolai Kamanin opposed this move, feeling that the complexity of the early missions made it inadvisable. A compromise was reached, thanks to the chief of the Communist Party’s Defence Industries Department, Ivan Serbin, who suggested flying an Air Force pilot (Yevgeni Khrunov) and an OKB-1 engineer (Alexei Yeliseyev) alongside Vostok 5 veteran Valeri Bykovsky on Soyuz 2. A few days later, on 21 November 1966, Komarov told a State Commission meeting at Tyuratam that he had been picked to fly Soyuz 1 and that Bykovsky, Khrunov and Yeliseyev would follow aboard Soyuz 2. It was a triumph for the civilians. Yet had Yeliseyev flown as planned on Soyuz 2, he would not only have become the first of Mishin’s civilians to enter space, but would have also been the first of them to die during his descent to Earth…

Over the years, western observers suspected that the Soyuz 1 mission had been pushed to fly prematurely and improperly as a political stunt in advance of the May Day celebrations, since 1967 coincided with the half-century anniversary of the Bolshevik Revolution. Additionally, Leonid Brezhnev was in Karlovy Vary in Czechoslovakia at the time, at a meeting of the Soviet bloc leadership; the propaganda value of a major space success, for him, would be incalculable. In a dispatch to the Washington Star newspaper, Moscow correspondent Edmund Stevens wrote that the space effort under Mishin was less able to resist political pressure than Korolev had been. (It was even suggested that Leonid Smirnov, chairman of the Military-Industrial Commission, had personally told Komarov, still sceptical about Soyuz’ readiness, that the cosmonaut might as well remove all of his military decorations if he refused to fly the mission… )

In the days preceding the manned shot, rumours hinted of a space spectacular to rival Gemini and Apollo: a joint mission involving not one Soyuz, but two, and perhaps featuring rendezvous, docking and even the spacewalking transfer of crew members from one vehicle to the other. Reuters, for example, revealed on 19 April 1967 that such stories were circulating with some excitement in Moscow. Three days later, western journalists in the Soviet capital were told that two spacecraft with five or six cosmonauts would be launched, beginning on 23 April. If all went well with the first mission, it seemed likely that Soyuz 2 would fly at 3:10 Moscow Time the next morning. Komarov would attempt a docking on Soyuz 2’s first or second orbit and the two spacecraft would remain docked for perhaps three days. “There was speculation,” Time magazine told its readers on 5 May, “that the second ship had a restartable engine that would push the joined ships as far out as 50,000 miles.” This was obviously a false assumption, but it does highlight the uncertainty of exactly what the Soviets were up to.

Actually, the joint mission, and specifically the spacewalking transfer of cosmonauts between two spacecraft, had caused concern for months. The hatch in the Soyuz orbital module, for example, was barely 66 cm in diameter, scarcely wide enough for a fully-suited man to get outside and virtually impossible for him to get back inside. (The problems of space suits ‘ballooning’ had already been experienced by Alexei Leonov.) A redesign of the hatch, Mishin realised, would add months to the schedule and the decision was instead taken to modify the suits by moving their oxygen supplies from the cosmonaut’s back to his waist. Enlarged hatches would then be implemented on later missions. Nikolai Kamanin was unimpressed. ‘‘I am personally not fully confident that the whole programme of flight will be completed successfully,’’ he wrote, ‘‘although there are no sufficiently weighty grounds to object to the launch. In all previous flights we believed in success. Today, there is not such confidence in victory. . . This can perhaps be explained by the fact that we are flying without Korolev’s strength and assurances.” It did not bode well for the four men assigned to fly the Soyuz 1/2 joint mission.

Photographs released over the years have shown Komarov training with Bykovsky, Khrunov and Yeliseyev, the latter pair clad in EVA-type suits, confirming that they would have attempted the risky Soyuz-to-Soyuz transfer. Others show Yuri Gagarin, Komarov’s backup, assisting Khrunov with his helmet. In their biography of Gagarin, Jamie Doran and Piers Bizony pointed out that it was Korolev’s death in January 1966 which refocused the First Cosmonaut on somehow getting himself back into space. His renewed self-discipline and vigour in completing an engineering diploma at the Zhukovsky Air Force Academy impressed Nikolai Kamanin sufficiently to assign Gagarin in October 1966 as Komarov’s backup. However, despite his confidence, Kamanin noted in his diary that Gagarin’s importance to the Soviet state made it unlikely he would ever fly again.

Years later, Soviet journalist Yaroslav Golovanov would recall Gagarin’s behaviour in the hours before the Soyuz 1 launch as quite unusual. ‘‘He demanded to be put into the protective space suit,’’ Golovanov was quoted by Doran and Bizony. ‘‘It was already clear that Komarov was perfectly fit to fly, and there were only three or four hours remaining until liftoff time, but he suddenly burst out and started demanding this and that. It was sudden caprice.’’ Venyamin Russayev expressed his belief over the years that Gagarin was trying to elbow his way onto the mission to save Komarov from almost certain death in a botched spacecraft. Others have countered that, since Komarov was not meant to wear a space suit on Soyuz 1, Gagarin’s antics were actually designed to encourage his comrade to take one as an additional safety margin. Alternatively, maybe Gagarin was simply trying to disrupt matters somehow. Whatever the reality, archived pre-launch footage of the cosmonauts from that fateful third week of April 1967 – an unhappy Komarov, a downcast Gagarin and a team of very dejected technicians – show that that the atmosphere at Tyuratam was one of tense pessimism.

Other official images of Komarov arriving at the launch site showed him quite differently: bedecked with flowers… as, indeed, were Bykovsky, Yeliseyev and Khrunov, also in attendance for their own mission a day later. Plans for the flights were still very much in flux. Disagreement flared over whether to dock automatically or manually, with Mishin favouring the former and Komarov expressing confidence that he could guide Soyuz 1 by hand to a linkup from a distance of 200 m. At length, the chair of the State Commission, Kerim Kerimov, supported an automatic approach to 50-70 m, followed by a manual docking, although his judgement was still hotly contested.

Nevertheless, at 3:35 am Moscow Time on 23 April, Soyuz 1 was launched and inserted into a satisfactory orbit of 201-224 km. Within moments of reaching space, the Soviets referred to his mission, by name, as ‘Soyuz 1’, clearly indicating that a ‘Soyuz 2’ would follow soon. Fellow cosmonaut Pavel Popovich told Komarov’s wife, Valentina, that he was in orbit, to which she responded that ‘‘he never tells me when he goes on a business trip!’’ Four and a half hours into the mission, a bulletin announced that the flight was proceeding normally; as, indeed, did another report at 10:00 am. More than 12 hours then elapsed before any more news emerged from the Soviets, and when it did finally come, it was devastating. Not only had there been no Soyuz 2 launch, but, stunningly, Komarov had lost his life during re-entry.

Little information other than the basics were forthcoming in the terse final report. It alluded to Soyuz 1’s ‘‘very difficult and responsible braking stage in the dense layers of the atmosphere’’ and concluded that the ‘‘tangling of the parachute’s cords’’ had caused the spacecraft to fall ‘‘at a high velocity, this being the cause of the death of Colonel Vladimir Komarov’’. Twenty years later, Phillip Clark wrote of ‘‘persistent reports’’ that problems had been experienced during Soyuz 1’s first few hours in orbit. Its left-hand solar array failed to deploy properly, depriving Komarov of more than half (some sources say as much as 75 per cent) of his electricity supply. Soyuz 1 would be forced to run on batteries for a shortened mission of around a day in orbit. The subsequent, unusual, lack of televised images from the cabin and no other reports of in-flight activities lent credence to notions that the flight was in deep trouble.

A backup telemetry antenna also failed, probably triggering intermittent reception, and problems with solar and ionic sensors prevented Komarov from achieving even basic control of his craft’s orientation. (It later became clear that the Sun sensor had actually been contaminated by Soyuz’ thruster exhausts.) Although the antenna failure was a minor annoyance, the solar sensor was more serious, because without it Soyuz 1 could not be properly oriented for rendezvous and docking. During his fifth orbit, the cosmonaut tried to use his periscope and Earth’s horizon to reorient the craft, but found it virtually impossible to do so. The failure of the left-hand solar panel to open had also left Soyuz 1 in an asymmetric configuration, which made attitude control far more difficult. At one point, Komarov even knocked with his boots on the side of the spacecraft, to free a stubborn deployment mechanism for the panel, but without success. By this time, the Soyuz 2 launch – already hampered by heavy rain at Tyuratam, but now exacerbated by the ongoing problems in orbit – had been called off and the focus had shifted instead to ensuring Komarov’s safe return to Earth.

Attempts to bring him home, Clark continued, were planned on the 16th, 17th and 18th orbits, with the first retrofire attempt called off, presumably because the spacecraft could not be properly stabilised. Indeed, Doran and Bizony have reported that, at one stage, Komarov complained with fury: “This devil ship! Nothing I lay my hands on works properly.’’ Unlike the spherical Vostok, the underside of Soyuz’ bell-shaped descent module was distinctly flattened and it had an offset centre of gravity to provide it with some aerodynamic ‘lift’ during re-entry. However, it also required far more precision as it began to enter the atmosphere and, with Soyuz 1’s guidance system out of action, the cosmonaut could not keep it under control. When it began to spin, he attempted to fire his attitude-control thrusters to stabilise the situation, but their close proximity to the navigation sensors meant that he could not accurately align the spacecraft. In desperation, Komarov resorted to using the Moon to work out his alignment.

The first retrofire attempt apparently began at 2:56 am on 24 April, but the problems forced the automatic control system to inhibit it. A decision was made shortly thereafter not to make another attempt on the 17th circuit, but to use that pass over Russia to prepare him for re-entry on the next orbit. Sometime between 3:30-4:00 am, a Japanese station received signals from Soyuz 1 and Tass announced that a routine communications event was being held between mission controllers and Komarov. That ‘event’, according to some, was far from routine. In August 1972, a former National Security Agency analyst, under the pseudonym Winslow Peck (real name Perry Fellwock), reported being on duty at a monitoring station near Istanbul in Turkey on the morning of Komarov’s death. According to Fellwock’s report, the cosmonaut and ground controllers knew that the situation would produce fatal consequences and Komarov even spoke personally to his wife, Valentina, and to a tearful Soviet premier Alexei Kosygin. ‘‘He told [his wife] how to handle their affairs and what to do with the kids,’’ wrote Fellwock. ‘‘It was pretty awful. Towards the last few minutes, he was falling apart. . . ’’

These and other harrowing, though unverified, reports imply that Komarov knew that the problems with Soyuz 1 were insurmountable. Unconfirmed stories over the years hinted that, when he finally began re-entry, he grumbled that ‘‘the parachute is wrong’’ and ‘‘heat is rising in the capsule’’. Evidently, the actual retrofire on his 18th orbit was far from perfect, in light of the asymmetrical shape of the spacecraft and the inability of the attitude-control thrusters to maintain proper orientation. Still, retrofire began at 5:59 am and ran for long enough to ensure entrance into the atmosphere. The Yevpatoriya control station in the Crimea picked up voice communications at 6:12 am, in which Komarov apparently advised them of the results of the retrofire and his loss of attitude, before entering a period of blackout as heated plasma surrounded the spacecraft.

During re-entry, the descent module should have separated from the remainder of the Soyuz – the orbital and instrument sections – about 12 minutes after retrofire. Parachute deployment should have begun 14 minutes later and touchdown some 39 minutes and 27 seconds after retrofire. Komarov’s voice reappeared during re-entry, sometime between 6:18 and 6:20 am, and was described as calm and unhurried, in spite of the 8 G load imposed by what was effectively a steep, ‘ballistic’ descent. Notwithstanding these problems, Soyuz 1 might still have landed safely. Then its parachutes failed.

In his autobiography, fellow cosmonaut Alexei Leonov related being based in the control centre, participating in the recovery effort. He wrote that ‘‘the brake chute deployed as planned and so did the drag chute, but the latter failed to pull the main canopy out of its container. While the reserve chute was then triggered, it became entangled with the cords of the drag chute and also failed to open’’. Indeed, Soyuz 1’s landing point – at 51.13 degrees North latitude and 57.24 degrees East longitude, some 65 km east of the industrial city of Orsk, in the southern Urals – was considerably farther west than normal and has been seen by many analysts as ‘‘consistent with a purely ballistic re-entry. . . and no parachute deployment’’. Locals in the Orsk area, who witnessed the final stages of the descent, confirmed that Soyuz 1’s parachutes were simply turning, not filling properly with air…

Meanwhile, Soviet anti-aircraft radar installations detected the incoming descent module at 6:22 am and predicted its ‘landing’ two minutes later. Elsewhere, listening posts in Turkey are said to have intercepted Komarov’s cries of rage and frustration as he plunged to his death, cursing the engineers and technicians who had launched him in a fault-ridden spacecraft. Whether this really happened will probably never be known with certainty. Travelling at more than 640 km/h, Soyuz 1 hit the ground like a meteorite, killing the cosmonaut instantly and completely flattening the descent module. Solid-fuelled rockets in its base – meant to cushion the touchdown – detonated on impact, causing the remains to burst into flames. The whole landing site was soon engulfed in smoke and the first helicopter pilot on the scene quickly judged that it was a fatal situation. ‘‘But he also knew he was on an open loop with Yevpatoriya and the Ministry of Defence satellite control centre in Moscow,’’ wrote Deke Slayton. ‘‘All he said was ‘the cosmonaut is going to need emergency medical treatment outside the spacecraft’, at which point the lines were cut by somebody in the rescue units.’’

The misleading call for ‘urgent medical attention’ is an intriguing story in itself. Flight surgeons Oleg Bychkov and Viktor Artamoshin, members of the search and rescue group which found Soyuz 1, recounted later that their helicopter touched down 70-100 m from the point of impact. ‘‘Everybody rushed to the capsule,’’ they wrote, ‘‘but only upon reaching it, realised that the pilot would no longer need help. Fire inside the spacecraft was spreading and its bottom completely burned through with streams of molten metal dripping down.’’ The rescue team was equipped with coloured flares to signal the overflying aircraft about the situation on the ground. No code existed to denote the death of the cosmonaut, so they were forced to fire the flare which equated to Komarov needing medical aid. It was this misunderstood message which, tragically, kindled some hope that Vladimir Komarov had survived.

On the ground, the flames were so fierce that portable foam extinguishers proved insufficient and the would-be rescuers began shovelling heaps of dirt onto the capsule. The force of impact had already reduced it from its normal 2 m height to a tangled mess no more than 70 cm tall and it was during the frantic firefighting effort that Soyuz 1 literally collapsed, leaving a pile of charred wreckage and a couple of congealed pools of molten aluminium, topped by the circular entrance hatch. Nearby lay the three parachutes. Komarov’s remains were “excavated” from what was left of his ship at 9:30 am and his death was pronounced as having been caused by multiple injuries to the skull, spinal cord and bones. Later eyewitness reports revealed that his ‘body’ took the form of a ‘lump’, 30 cm wide and 80 cm long, while Venyamin Russayev recounted that a heel bone was the only recognisable fragment left…

By this time, Nikolai Kamanin himself was on the scene and it was he who telephoned Dmitri Ustinov, who in turn contacted Leonid Brezhnev. Five hours later, it was Ustinov who carefully edited Tass’ communique on the subject of Komarov’s death.

A government investigation, headed by V. V. Utkin of the Flight Research Institute of the Aviation Industry, revealed that Soyuz 1’s parachute container had opened at an altitude of 11 km and had become ‘deformed’, squeezing the main canopy and preventing it from opening correctly. Although a small drogue had come out, the main parachute simply could not exit the container, and not just because of the deformation. The drogue was supposed to impart a force of 1,500 kg to pull out the main parachute, whereas it actually required upwards of 2,800 kg, perhaps a result of air pressure in the descent module pushing against the container. Such problems had never arisen in tests, Utkin’s panel found, but attributed them to the abnormal and ‘random’ conditions surrounding the Soyuz 1 descent. Future missions, the panel decreed, would benefit from enlarged and strengthened parachute containers. The failure of the drogue to pull out the main parachute was compounded by its backup canopy. This quickly became entangled with the fluttering drogue, leaving nothing to arrest Komarov’s meteoric fall to Earth.

Unofficially, gross negligence on the part of manufacturing technicians has also been blamed for Komarov’s death. During pre-flight preparations, explained Asif Siddiqi, the Soyuz 1 and 2 spacecraft were coated with thermal protection materials and placed in a high-temperature test chamber. Both were evaluated with their parachute containers in place, but lacking covers. This resulted in the interiors of both containers becoming covered with a polymerised coating, which formed a very rough surface and directly prevented Soyuz 1’s parachute from deploying. ‘‘Clearly,’’ wrote Siddiqi, ‘‘the most chilling implication of this manufacturing oversight was that both Soyuz spacecraft were doomed to failure – that is, if Komarov had not faced any troubles in orbit and the Soyuz 2 launch had gone on as scheduled, all four cosmonauts would have died on return.’’ None of this was mentioned in the official Soyuz 1 accident report.

As the Soviets, like the Americans, dug in for a lengthy period of self-criticism and introspection to make their craft spaceworthy, not another cosmonaut would venture aloft until October 1968. That cosmonaut, Georgi Beregovoi, would establish a new record as the oldest man yet to be launched into orbit, aged 47. He was also one of Yuri Gagarin’s harshest critics – a senior Soviet Air Force officer, Second World War combat veteran and decorated test pilot, albeit unflown in space – who considered the First Cosmonaut to be “an upstart’’ and a bit-of-a-lad who was “too young to be a proper Hero of the Soviet Union’’. Their relationship in the months before Komarov’s death grew so stormy that Gagarin even shouted that Beregovoi would never fly in space.

Seven months after Gagarin’s untimely death in an aircraft crash, Beregovoi finally got his chance. It was he who would lay the ghost of Vladimir Komarov to rest and nurse Soyuz through its first successful manned mission.

TWINS?

‘‘I had pointed Frank Borman at one of the Gemini long-duration missions from the very begininng,’’ Deke Slayton wrote in his autobiography, ‘‘because of his tenacity.” That tenacity, some argued, had also led to his removal from the right – hand pilot’s seat, alongside Gus Grissom, on the original Gemini V. It has been speculated that the two men’s strong personalities might have made them incompatible as a commander-pilot duo and the no-nonsense, decisive Borman was instead directed to lead Gemini VII. Some astronauts regarded him as obnoxious and Gene Cernan labelled him a “tight-assed son-of-a-bitch’’, but none questioned his abilities or impeccable leadership skills. Indeed, he remains one of only five American astronauts to have commanded a crew on his very first mission. One day, in the not too distant future after Gemini VII, his talent and credentials would also lead him to command the first human expedition to the Moon.

Frank Frederick Borman II was born in Gary, Indiana, on 14 March 1928. As a child, he suffered from numerous sinus problems, caused by the cold and damp weather, so his father moved the family to the better climate of Tucson, Arizona, which became Borman’s hometown. Like many future astronauts, he could trace his fascination with aviation from an early age and began flying at the age of 15. From Tucson High School, Borman studied for a bachelor’s degree at the Military Academy in West Point, followed by a master’s in aeronautical engineering from the California Institute of Technology.

After graduation from West Point in 1950, ranking eighth in his class, he entered the Air Force, serving as a fighter pilot in the Philippines and later as an instructor attached to various squadrons across the United States. During one practice dive­bombing run, he ruptured an eardrum, leading him to fear that he may never fly again. However, Borman recovered. Before coming to NASA in September 1962, he also graduated from the Air Force’s Aerospace Pilot School as an experimental test flier and served for a time as an assistant professor of thermodynamics and fluid dynamics at West Point. At the time of his selection, he had more experience in jet aircraft – some 3,600 hours – than any of the others in the New Nine.

Clearly, even among the Nine, Borman stood out. During the selection process, his absolute devotion to the West Point military code of Duty-Honour-Country and his unwavering commitment to whatever mission he was assigned led some psychologists to shake their heads in disbelief. Surely nobody could be that uncomplicated, they thought. Yet that was Borman. Like Gus Grissom, he did not dabble in small talk and, in true military fashion, made whatever decisions needed to be made, stuck by them and told his crew afterwards.

In many ways, James Arthur Lovell Jr – whom Pete Conrad had nicknamed ‘Shaky’ for his bubbling stores of nervous energy – was virtually Borman’s twin. Both were born within two weeks of each other, both held equivalent ranks within different services, both were fair-haired and blue-eyed and both were selected as astronaut candidates together. Lovell was born on 25 March 1928 in Cleveland, Ohio and his fascination with rockets, like Borman’s with aviation, manifested itself at a young age. In his book on the Apollo 13 mission, co-authored with Jeffrey Kluger, Lovell recounted sheepishly visiting a chemical supplier in Chicago one day in the spring of 1945 to buy chemicals with which he and two school friends could build a rocket for their science project. Despite the boys’ admonitions over wanting to create a liquid-fuelled device, like those of Robert Goddard and Hermann Oberth,

TWINS?

Frank Borman performs a visual acuity test during Gemini VII.

their teacher guided them instead towards a solid-propelled one, loaded with potassium nitrate, sulphur and charcoal. Days later, after packing the gunpowder ingredients into a shell of cardboard tubes, a wooden nosecone and a set of fins, the boys took their rocket into a field, lit the fuse and ran like hell.

“Crouching with his friends,” Lovell wrote in third-person narrative about his exploits, “he watched agape as the rocket he had just ignited smouldered for an instant, hissed promisingly and, to the astonishment of the three boys, leapt from the ground. Trailing smoke, it zigzagged into the air, climbing about 80 feet before it wobbled ominously, took a sharp and surprising turn, and with a loud crack exploded in a splendid suicide.”

Lovell’s interest in the workings and possibilities of such projectiles eclipsed that of his two friends, who regarded this as little more than a lark, but his family situation made it unrealistic to hope that a career in rocketry was within his grasp. The Lovells had moved to Milwaukee, Wisconsin, when he was a young boy and his father’s death in a 1940 car accident placed enormous pressure on his mother to make ends meet. The military and, in particular, the Navy, seemed an attractive alternative. (Lovell’s uncle, in fact, had been one of world’s earliest naval aviators during the First World War.) He was accepted, eventually, into the Navy, which offered to pay for two years of an undergraduate degree, provide initial flight

training and six months of active sea duty. Lovell jumped at the chance and, within months, was registered as an engineering student at the University of Wisconsin at Madison. He would complete his studies in 1952, receiving a bachelor’s degree from the Naval Academy at Annapolis.

Whilst at the academy, he met Marilyn Gerlach, whom he married barely three hours after his graduation ceremony… and who had typed up his carefully – prepared thesis on liquid-fuelled rocketry. Flight training consumed much of the next two years, after which Lovell was attached to Composite Squadron Three, based in San Francisco, whose speciality included nighttime takeoffs and landings on aircraft carriers at the height of the Korean conflict. Several months later, he was flying F-2H Banshee jets from the Shangri-La aircraft carrier over the Sea of Japan, routinely swooping in to land on its deck. On one occasion, however, a routine flight went seriously wrong. Moreover, the flight was his first mission in darkness.

The only means of determining where the carrier was at night, Lovell wrote, was a beamed, 518-kilocycle signal from the Shangri-La, which allowed the Banshee’s automatic direction finders to guide him home. However, poor weather forced the ship to cancel the mission of Lovell, his teammates Bill Knutson and Daren Hillery and their group leader Dan Klinger; in fact, Klinger had not even left the deck of the Shangri-La when the flight was terminated. Unfortunately for Lovell, his direction finder had picked up the signal of a tracking station on the Japanese coast – which also happened to be transmitting at 518 kilocycles – and, far from guiding him back to the Shangri-La, was actually taking him further away. Around him, he saw nothing but a “bowl of blackness’’.

Perhaps the homing frequencies had changed, Lovell thought. At once, he turned to the list of frequencies on his kneeboard, but upon switching on his small, jury – rigged reading light, “there was a brilliant flicker – the unmistakable sign of an overloaded circuit shorting itself out – and instantly, every bulb on the instrument panel and in the cockpit went dead’’. His options seemed dire: ask the Shangri-La to switch its lights on, which was hardly advisable and would prove hugely embarrassing, or ditch in the icy sea. Then, in a story repeated by Tom Hanks, who played Lovell in the 1995 movie ‘Apollo 13’, he saw a faint greenish glow, like a vast ‘carpet’, stretching out below and ahead of him. It was the phosphorescent algae churned up in the Shangri-La’s wake and it guided him back to the company of his two wingmen, Knutson and Hillery, and a safe, though hard, landing which he later described as ‘‘a spine-compressing thud’’.

For his efforts, the sweat-drenched Lovell was given a small bottle of brandy, downed in a single gulp, and the opportunity to fly his next nocturnal mission. . . the very next night. This time, thankfully, his automatic direction finder behaved flawlessly. Eventually, he accumulated no fewer than 107 carrier landings and became an instructor in the FJ-4 Fury, F-8U Crusader and F-3H Demon jets, before moving to the Navy’s Test Pilot School at Patuxent River. He graduated first in his class, ahead of Wally Schirra and Pete Conrad. Less than two years later, in early 1959, he was one of 110 military test pilots ordered to attend a classified briefing in Washington, DC. Like Conrad, he would be turned down for Project Mercury, but secured admission into the exalted ranks of NASA’s astronaut corps, together with Frank Borman, in September 1962.

THIRD TIME LUCKY

Five days before See and Bassett were killed in St Louis, the AMU was delivered to Cape Kennedy for testing. Initial inspections were worrisome: with nitrogen pressurant leaks from its propulsion system and oxygen leaks from its integral life – support unit. However, by mid-March, engineers had rectified these glitches and the rocket armchair was once more on track for Gemini IX’s launch, planned for 17 May 1966. Right from the start, in terms of complexity, its three days aloft would mark a quantum leap even over the ambitious Gemini VIII.

Newly bumped from backup to prime crew, Tom Stafford and Gene Cernan would tackle a flight that even an internal NASA memo had dubbed “really exciting” and which, if successful, would generate “experience one would not ordinarily expect to get in less than three missions”. Key tasks, aside from the lengthy EVA, would be a simulation, using the Agena, of how an Apollo command and service module would rendezvous and dock with the lunar module. Stafford and Cernan would then fire the Agena’s main engine to boost themselves into a higher orbit. After the completion of the Agena rendezvous activities, Cernan would perform his spacewalk.

On 2 March, the Gemini IX spacecraft – which had so narrowly avoided destruction on the factory floor of McDonnell’s Building 101 – was shipped to Cape Kennedy and its Titan II rocket was erected at Pad 19 three weeks later. By the end of the month, the spacecraft had been attached to the tip of the Titan and electrical and mechanical compatibility tests got underway in anticipation of the mid-May launch. Elsewhere at the Cape, the Atlas booster which would be used to loft Stafford and Cernan’s Agena into orbit was installed on Pad 14. By early May, the Agena itself, tailnumbered ‘5004’, had arrived at the launch complex and was mated to the Atlas.

In the small hours of 17 May, Flight Director Gene Kranz arrived at his console to oversee the launches of the Atlas-Agena and, 99 minutes later, of Gemini IX. Meanwhile, in the crew quarters at Cape Kennedy, Stafford and Cernan were awakened, underwent standard medical checks and sat down to breakfast with Deke Slayton and Al Shepard. In his autobiography, Cernan would recount keeping ‘‘a stone face, all business, but butterflies stirred in my stomach’’. He strung a religious medal around his neck, bearing a silver disk with the image of Our Lady of Loreto and the legend ‘Patroness of Aviation, Pray for Me’, then settled into a couch to have his biosensors and space suit fitted.

The heightened sense of anxiety was not helped when Slayton took Stafford aside for a private ‘word’; Cernan would not learn until later what their conversation had been about. It was a conversation that Slayton would have with many a Gemini command pilot whose mission featured an EVA. Cernan’s spacewalk would be an exceptionally dangerous one, Slayton told Stafford, and if something went wrong and he was unable to get back inside Gemini IX, NASA could ill-afford to have a dead astronaut floating in orbit. In such a dire situation, somehow, Stafford would have to bring Cernan’s corpse back to Earth.

In his autobiography, Stafford recalled staring at Slayton in astonishment. ‘‘To bring him back,’’ he wrote, ‘‘the hatch is going to be left partially open because the attachment point for the umbilical is inside the spacecraft near the attitude hand controller.” Such an awkward re-entry would not be survivable. In reality, he told Slayton, when the explosive bolts blew at the base of the Titan, signalling liftoff, it was Stafford, as Gemini IX’s command pilot, who would call the shots and make the difficult decisions if something should go wrong.

Cernan also knew that the only realistic option for Stafford would be to cut him loose, close the hatch and return to Earth alone. He understood the risks equally as well as Stafford and Slayton. ‘‘I knew Tom would be unable to pull me back inside if I couldn’t get myself out of trouble,’’ he wrote. ‘‘He would work like the devil to rescue me, but eventually would have to abandon me. We both knew it.’’

Slayton would have a similar conversation a few weeks later with Gemini X’s command pilot, John Young, and would receive a similar reception. ‘‘There was no way,’’ Young recounted in a 1996 interview, ‘‘if anything happened to somebody going outside a Gemini that you could get them back in.’’ The seat was too narrow and it was impossible for the command pilot to reach over and pull an inflated, rigidised space suit with an immobile person inside back into the right-hand seat with enough overhead clearance to close the hatch. It is more than fortunate, therefore, that such an eventuality never came to pass.

By the time Stafford and Cernan arrived at Pad 19 and were strapped inside their spacecraft, all eyes were on the impending Atlas-Agena launch and a fervent hope pervaded the Cape that there would be no repeat of the Gemini VI debacle. All seemed to be going well and, at precisely 10:12 am, the rocket thundered aloft. Aboard Gemini IX, Stafford and Cernan were exuberant as the final hurdle before their own launch at 11:51 am was cleared… or so it seemed.

One hundred and twenty seconds after liftoff, wrote Cernan, ‘‘one of the two main engines on the Atlas went weird’’. The No. 2 engine wobbled, then inexplicably gimballed into a full-pitchdown position, spinning the entire rocket into an uncontrollable tumble. All attempts by the rocket’s stabilisation system to correct the problem were useless. Ten seconds later, as intended, the engines shut down and the needle-like Agena separated on time, but, Cernan continued, ‘‘it was too late, too low, too fast and all wrong’’. So wrong, in fact, that the 216-degree pitchdown had effectively pointed the Agena back towards Cape Kennedy, with a climbing angle just 13 degrees above horizontal. Worse yet, guidance was lost and the Agena plopped into the Atlantic, 198 km off the Cape, at 10:19 am.

Thirteen million dollars’ worth of hardware was gone, all the result, it later became clear, of a short in a servo control circuit. Atop the Titan on Pad 19,

Stafford’s first reaction, understandably, was “aw, shit”, as the second Atlas-Agena of his astronaut career vanished. He and Cernan quickly inserted the safety pins back into their ejection seats’ safe-and-arm devices and Guenter Wendt’s team began the laborious process of extracting them from the spacecraft. Despite the disappointment, good fortune glimmered on the horizon. Gemini IX would still fly its mission, thanks to a decision made late the previous year.

A rendezvous with Gemini VIII’s Agena was out of the question, since its orbit had not decayed sufficiently to be reachable by Stafford and Cernan. However, late in 1965, following the loss of Gemini VI’s Agena, NASA had ordered General Dynamics to furnish a backup Atlas. In response, McDonnell prepared an alternate rendezvous vehicle, known as the Augmented Target Docking Adaptor, or ATDA. It had to be ready, the agency stipulated, within two weeks of an accident and ongoing Agena engine problems brought it close to being used on Gemini VIII. Early in February 1966, the ATDA arrived at Cape Kennedy and was placed into storage for the very eventuality that NASA now faced with Gemini IX. Within hours of the failure, NASA formally approved the use of the ATDA and its Atlas, tailnumbered ‘5304’, for launch on the first day of June.

The tube-shaped ATDA, nicknamed ‘The Blob’ by the astronauts, looked very much like the Agena from the front and possessed a docking collar covered by a fibreglass cone; the latter was to be jettisoned shortly after arrival in orbit. Unfortunately, the ATDA did not have the Agena’s rear fuel tanks and powerful rocket engine, just two rings of thrusters to help with rendezvous and proximity operations. To ensure that the ATDA’s Atlas did not succumb to a similar failure, the cause of the 17 May mishap had to be pinpointed. Within a week, it was clear that a pinched wire in the autopilot had been responsible for the short circuit, necessitating additional work on the rocket’s electrical connectors.

Following a brief return to Houston for additional simulator training, Stafford and Cernan were back in Florida in good time for the 1 June launch attempt. Nothing would stop them this time: even if the ATDA and its Atlas were lost, they intended to use the final stage of their Titan as a rendezvous target. Shortly after five that morning, they were awakened to black clouds and the knowledge that Hurricane Alma brewed somewhere in the distance. The weather had little impact on the proceedings. At 10:00 am, the Atlas lumbered off Pad 14 and within six minutes had inserted The Blob almost perfectly into a 298 km orbit. ‘Almost’ perfectly, that is, because telemetry data quickly indicated that the cone covering The Blob’s docking collar had only partially opened and had failed to separate.

A brief conference confirmed that this problem was not insurmountable and the newly-renamed Gemini IX-A remained on schedule. Stafford and Cernan had a six – minute ‘window’, between 11:38 and 11:44 am, to launch, after which they would rendezvous with The Blob on their third orbit and dock high above the United States. (Conducting rendezvous progressively ‘earlier’ in a mission was deemed to offer the closest analogue for lunar orbital rendezvous operations.) A glitch in the Gemini’s inertial guidance system halted the proceedings, setting them three minutes behind schedule in an already-tight countdown. Finally, when it could not be rectified in time, the launch was scrubbed.

Another attempt could not be made until at least 3 June, giving technicians sufficient time to refuel the Titan, check the computers and identify and resolve the glitch. Launch on the 3rd would be scheduled for 8:39:50 am, precisely timed as The Blob hurtled directly above the Cape. That morning, the two astronauts again headed for their spacecraft, Stafford in no mood for humour, having already been nicknamed ‘The Mayor’ of Pad 19 because he had spent so much time there over the past eight months. Cernan wondered, indeed, if Stafford was jinxed. ‘‘I straightened him out,’’ Stafford recounted in his autobiography. ‘‘Schirra and Cernan were the jinxes. I was fine!’’

Some of the pad personnel still could not resist, however, hanging a large sign on the door to the gantry elevator which read ‘Tom and Gene: Notice the ‘down’ capability for this elevator has been removed. Let’s have a good flight.’ Stafford and Cernan’s backups, Jim Lovell and Buzz Aldrin, had even composed and hung their own poetic verse over the Gemini’s hatches. It read: ‘We were kidding before / But not anymore / Get your… uh … selves into space / Or we’ll take your place’. Humour aside, Cernan later wrote, ‘‘it would be a cold day in hell before Buzz Aldrin flew as the pilot of Gemini IX instead of me’’.

The potential for another glitch reared its head in the closing minutes when mission controllers transmitted a final update to the inertial guidance system and it again refused to respond. This time, however, it was decided to override it with another successfully-received trajectory update from 15 minutes earlier. Cernan described the liftoff as ‘‘just… different’’ and nothing at all like he expected it to be. ‘‘I sensed movement,’’ he wrote in his autobiography, ‘‘a feeling of slow pulsation and then heard a low, grinding rumble as that big rocket started to lift away from Earth in agonisingly slow motion.’’

That slow-motion start quickly gave way to the increasing sensation of tremendous speed as the Titan headed away from the Cape and thrust Stafford and Cernan, both gritting their teeth, towards orbit. As he saw and felt things never experienced before, Cernan wished he were a poet and could adequately describe what was happening. Eight minutes after launch, hurtling through the high atmosphere under the push of the rocket’s second stage, the astronauts found talking was restricted to grunting as 7.5 G imposed huge pressures on their lungs.

That sensation was soon replaced, when the second stage shut down, by one that Cernan had never known before: the onset of zero gravity. ‘‘A few nuts and bolts left behind by workers oozed out of their hiding places,’’ he wrote. ‘‘Dust particles and a piece of string did a slow dance before my nose. My hands drifted up in the weightlessness and my legs, wrapped in those metal pants, became featherlight.’’ Glancing through his tiny window, Cernan beheld the unmistakable shape of Africa, speckled with white clouds, and a distant glint of ocean. There was little time to gawp. He and Stafford had a date with an alligator.

SLOW RECOVERY

Within days of the publication of Floyd Thompson’s damning report into the Apollo 1 fire, the first efforts were implemented to fulfil its recommendations. Of paramount importance was the redesign of the hatch, which would change from a complex two – piece device into a ‘unified’ single section. Although it was heavier than the hatch which had prevented Gus Grissom, Ed White and Roger Chaffee from escaping the inferno of Spacecraft 012, it could be opened in as little as five seconds and had a manual release for either internal or external operation. At the same time, fire and safety precautions were upgraded at Cape Kennedy and a slidewire was added to Pad 34’s service structure to allow crews to rapidly descend to ground level.

By the beginning of May 1967, a sense pervaded NASA and North American that the first steps to recover from the fire were underway; so much so that George Mueller proposed an unmanned test flight of the gigantic Saturn V lunar rocket as soon as possible. A crewless demonstration of the improved Apollo system was definitely needed and, utilising a command and service module combo known as ‘Spacecraft 017’, was pencilled-in for the early autumn of that year. By that time, four manned missions had also been timetabled, one featuring the command and service module on its own, the other three inclusive of the lunar module, after which an attempt to actually touch down on the Moon might go ahead. Certainly, Time magazine told its readers on 19 May that unmanned Apollos were scheduled for September, October and December, followed by an inaugural manned mission in March 1968. NASA Headquarters were even more optimistic. Some managers suggested that a lunar landing could occur on the fourth manned Apollo flight, but their counterparts in Houston expressed more caution. Chris Kraft, for one, had warned George Low, who replaced Joe Shea to head the Apollo Spacecraft Program Office, that a lunar landing should not be attempted ‘‘on the first flight which leaves the Earth’s gravitational field’’.

Others, including Mueller, wanted to skip the flight of a manned command and service module in Earth orbit entirely and press on with a complete ‘all-up’ test of the entire Apollo combination, including the lunar module. ‘‘Bob Gilruth got in the way of this one,’’ wrote Deke Slayton. ‘‘For one thing, the Apollo CSM was a sufficiently complex piece of machinery that it needed a shakedown flight of its own. Why try to test two manned vehicles for the first time at the same time? We thought a CSM-only flight was the way to go before the fire and nothing we were going to learn was likely to change that.” Moreover, the lunar module itself was running months behind schedule and a manned flight was not anticipated until at least the end of 1968. Mueller was finally persuaded to accept a command and service module flight in Earth orbit for the first manned Apollo mission.

Despite the increased optimism, concerns remained. The schedule for the first unmanned Apollo test atop the Saturn V – designated ‘Apollo 4’ or ‘Apollo-Saturn 501’ (AS-501) – was extremely tight. In particular, the Saturn’s S-II second stage had undergone a difficult year of testing in 1966. Nonetheless, at the stroke of 7:00 am on

9 November 1967, the entire Cape Kennedy area received a jolt when the five F-1 engines of the Saturn V ignited with what Brooks, Grimwood and Swenson later described as ‘‘a man-made earthquake and shockwave… the question was not whether the Saturn V had risen, but whether Florida had sunk!’’ Deke Slayton, who had come to the Cape to watch the behemoth fly, later recounted that he had ‘‘seen a lot of launches… but nothing was ever as impressive as that first Saturn V. It just rose with naked power, lots of noise and light’’. Fellow astronaut Tom Stafford, also there, commented that Walter Cronkite’s CBS News trailer almost shook itself to pieces. ‘‘Suddenly,’’ added Mike Collins, ‘‘you realise the meaning of 7.5 million pounds of thrust – it can make the Cape Kennedy sand vibrate under your feet at a distance of four miles… ’’

The merest mention of the name ‘Saturn V’ implies power. From a height, weight and payload-to-orbit standpoint, it remains the largest and most powerful rocket ever brought to operational status, although the Soviet Union’s short-lived Energia had slightly more thrust at liftoff. It evolved from a series of rockets, originally dubbed the Saturn ‘C-1’ through ‘C-5’, of which NASA announced its intent to build the latter in January 1962. It would be, the agency revealed, a three-stage launcher with five F-1 engines on its first stage, five Rocketdyne-built J-2 engines on its second stage and a single J-2 on its third stage. These engines, when tested, had shattered the windows of nearby houses. It would be capable of delivering up to 118,000 kg into low-Earth orbit or up to 41,000 kg into lunar orbit. Early in 1963, the C-5 received a new name: Saturn V.

When a mockup of the rocket was rolled out to Pad 39A at Cape Kennedy on 25 May 1966, it amply demonstrated its colossal proportions. It stood 110.6 m tall and

10 m wide, only a few centimetres shorter than St Paul’s Cathedral in London. It comprised an S-IC first stage, an S-II second stage and was topped by the S-IVB which would be restarted in space to boost the Apollo spacecraft towards the Moon on a so-called ‘translunar injection’ (TLI) burn. All three stages used liquid oxygen as an oxidiser. Fuel for the first stage was the RP-1 form of refined kerosene, while the S-II and S-IVB utilised liquid hydrogen. Eighty-nine truckloads of liquid oxygen and 28 of liquid hydrogen, together with 27 railcars filled with RP-1, were needed to fuel the Saturn V.

The S-IC first stage, built by Boeing, was 42 m tall and its five F-1 engines, arranged in a cross pattern, produced over 3.4 million kg of thrust to lift the Saturn to an altitude of 61 km. The four ‘outboard’ engines could be gimballed for steering during flight, whilst the centre one was fixed. The S-II, built by North American, was

Spectacular panoramic view of the Cape Kennedy landscape as ‘Moon-fever’ gripped NASA in mid-1966. Clearly visible are a Saturn Y test vehicle, the gigantic Vehicle Assembly Building (VAB) and the Launch Control Center (LCC).

25 m tall and would make history as the largest cryogenic-fuelled rocket stage ever built. Finally, the Douglas Aircraft Company’s 17.85 m-tall S-IVB would be used to place the Apollo spacecraft into Earth orbit, then restart a couple of hours later for a six-and-a-half-minute-long TLI burn. It also provided a ‘garage’ to house the lunar module.

The Apollo 4 spacecraft was an old Block 1 with many features of the upgraded Block 2 design, including an improved heat shield and the new unified hatch. The aim of its mission was to evaluate its structural integrity, its compatibility with the Saturn V and its ability to enter an elliptical orbit and re-enter the atmosphere to land in the Pacific. The mission ran perfectly: the Saturn V boosted the spacecraft into a 185 km parking orbit and, after two circuits of the globe, for the first time, its S-IVB third stage restarted to propel Apollo 4 to an apogee of more than 17,000 km. Next, the service module’s SPS engine ignited, sending the spacecraft out to 18,000 km for a four-and-a-half-hour-long ‘soak’ in the little-known radiation and temperature environment of deep space. In doing so, Apollo 4 dipped its toe into the conditions that astronauts would one day experience as they traversed the 370,000 km translunar gulf.

Finally, with the command module’s nose pointed Earthward, the SPS fired a second time to bring it home. The service module separated and the command module hit the upper atmosphere, just as it would on a lunar return, at 40,000 km/h. Nine hours after its launch, Apollo 4 hit the waves of the Pacific, near Hawaii, just 16 km from the primary recovery ship Bennington. As successful as the mission had been, a long road remained before an actual lunar landing could be accomplished. Certainly, an additional uncrewed flight was highly desirable to many within NASA, providing further confirmatory data that the enormous rocket was capable of delivering men safely to the Moon. One crucial vehicle which still needed an ‘all-up’ performance test was Grumman’s lunar module, the first flight-ready version of which – designated ‘LM-1’ – was delivered to Cape Kennedy, three months late, at the end of June 1967.

By a strange twist, Apollo 5, which would consist solely of the lunar module, with no command and service module aboard, was assigned the Saturn 1B originally meant to carry Gus Grissom’s crew into orbit. In the immediate aftermath of the fire, it had been destacked from Pad 34, checked for corrosion or damage and finally restacked on Pad 37 on 12 April 1967. With the lunar module installed in its nose, the 55 m rocket looked unusual, ‘stubby’ even, since it lacked the command and service modules and an escape tower. The LM-1, encased in the final stage of the Saturn, had an incomplete environmental control system and was not fitted with landing gear, since it was destined to burn up during re-entry into the atmosphere.

Loading propellants aboard the rocket proved troublesome, mainly due to procedural difficulties and minor irritations such as clogged filters and ground support equipment glitches, but a simulated launch demonstration ended success­fully on 19 January 1968. Three days later, at 5:48 pm, Apollo 5 set off and was inserted perfectly into orbit. Forty-five minutes into the flight, LM-1’s attitude control thrusters pushed it away from the S-IVB and a lengthy checkout of its systems began. Two orbits later, its TRW-built descent engine – the world’s first-ever

The legless Apollo 5 lunar module is prepared for flight.

throttleable rocket, capable of slowing it down for landing on the Moon – was fired for 38 seconds, but was ended abruptly by the lunar module’s guidance system when it sensed the vehicle had not accelerated fast enough. In response to the cutoff, flight controllers moved to an alternate plan: firing the descent engine on two further occasions, then igniting the ascent engine. With all primary tests done, LM-1 re­entered the atmosphere to destruction and its remains plunged into the Pacific, several hundred kilometres south-west of Guam, on 12 February. So successful, in fact, was Apollo 5 that a further unmanned test of the lunar module was considered unnecessary. Its next flight, atop the Saturn V, would be carried out with a crew aboard.

However, the lander still had many problems of its own. The instability of its Bell – built ascent engine, in particular, caused concern throughout 1967 and for much of 1968. Although both George Mueller and Sam Phillips felt that Bell had a good chance of solving the engine’s fuel-injector problems, the agency nevertheless hired Rocketdyne to develop an alternate device. Despite difficulties in both cases,

Rocketdyne was ultimately chosen to outfit the lunar module’s fuel injector. Other problems with the bug-like lander included windows blown out and fractured during high-temperature tests, broken wiring and stress corrosion cracks in its aluminium structural members; the latter led to the formation of a team to identify the cause and implement corrective actions. Grumman analysed more than 1,400 components and heavier alloys were employed for newer sections of the lunar module. Weight, too, posed an issue. In 1965, more than 1,100 kg had been shaved from the lunar module and NASA even offered incentives to Grumman to remove yet more unwanted bulk. The LM-1 flight had been good enough for NASA to cancel an unmanned LM-2 test, but LM-3 – the first mission to fly manned – would not be ready until at least the end of 1968.

Meanwhile, the performance of the Saturn V on the Apollo 4 mission fired up hopes that it could soon be entrusted with a human crew. Nonetheless, another test flight, that of Apollo 6, was still required … and rightly so, for the rocket’s second mission, AS-502, almost ended in a disaster. On 13 March 1967, the S-fC first stage arrived at Cape Kennedy and, inside the cavernous interior of the Vehicle Assembly Building, was mated to its S-ff second stage in May. By February of the following year, topped by the S-fVB third stage and the Apollo 6 command and service module, it was rolled into wind-driven rain towards its destination: Pad 39A, today revered as one of the most famous and historic launch platforms in the world. Despite communications difficulties, which forced a two-hour halt, the stack arrived at the pad at 6:00 pm.

Aside from being a second unmanned test of the Saturn V, the Apollo 6 mission would put Spacecraft 020 through its paces on the final flight of the command and service modules before a human crew headed aloft on Apollo 7. Originally scheduled for launch in the first quarter of 1968, the flight was postponed several times. First, the tank ‘skirt’ on another service module split during structural tests, prompting an inspection and restrengthening of Apollo 6 to prevent a similar problem. Next, after rollout to the pad, water seepage was detected in the Saturn V’s S-ff second stage and some parts had to be replaced. Eventually, at 7:00 am on 4 April, the rocket thundered into the heavens, seemingly with perfection. . . and then, things began to go wrong.

Throughout the first two minutes of its climb, the five F-1 engines burned steadily and normally, then experienced thrust fluctuations which caused the entire rocket to oscillate longitudinally like a pogo stick for around 30 seconds. Low-frequency modulations were recorded in the Apollo 6 command module, exceeding design criteria, but otherwise the first stage completed its work. However, the time soon came for the S-ff second stage to exhibit problems: two of its five J-2 engines suddenly stopped, four minutes into a six-minute firing, requiring the others to burn for 59 seconds longer than planned to compensate for the abrupt power loss. The rocket did not tumble and explode, however, because the failed J-2s were adjacent to one another and the Saturn survived by gimballing its remaining ‘good’ engines. Still, the second stage did not achieve its desired velocity and ended up at a higher altitude than it should before its fuel was exhausted.

This meant that the S-fVB had to burn for correspondingly longer. ft ‘‘was

confusing to the computer guiding the S-IVB,” wrote Deke Slayton, “which realised it was higher than it should be… and slower. So while it added 29 seconds to the burn, it actually pointed itself down toward the centre of the Earth.” At length, after a difficult ascent in which the S-IVB pitched itself back upwards and entered orbit firing backwards, Apollo 6 was inserted into a wild 178-367 km elliptical orbit, instead of a 160 km circular path. The Saturn’s troubles, though, were still not over. An attempt to restart the S-IVB – just as it would be required to do in order to boost Apollo crews toward the Moon – failed when the third stage refused to ignite. “If this had been a manned flight,’’ wrote Deke Slayton, “the escape tower on the Apollo would have been commanded to fire, pulling the spacecraft away from the Saturn for a parachute landing in the Atlantic.’’

An ‘alternate’ mission was now inevitable and the command and service module were duly separated from the S-IVB and the SPS engine burned for seven minutes, simulating a TLI manoeuvre and pushing the apogee of Apollo 6’s looping elliptical orbit to 22,200 km. This gave it enough altitude to mimic a lunar-type return, but not enough velocity, and it splashed down in the Pacific, missing its impact point by 80 km. Ten hours after launch, the command module was hauled aboard the amphibious assault ship Okinawa. Despite a NASA press release which declared that preliminary data indicated the spacecraft had done its job well, many felt that, overall, the mission had not been a success. The Saturn V might need a third unmanned test before it could be flown with astronauts aboard.

In fact, pogo effects had been observed, to a lesser extent, during the Apollo 4 launch and its apparent cause was traced to a partial vacuum created in the fuel and oxidiser suction lines by the rocket engines. The condition, wrote Brooks, Grimwood and Swenson, produced a hydraulic resonance; in effect, the engine ‘skipped’ when bubbles caused by the partial vacuum reached the firing chamber. Engineers later determined that two of the Saturn V’s engines had been inadvertently tuned to the same frequency, which probably made the problem worse. In future, all clustered engines were tuned to different frequencies to prevent any two or more of them from pulling the rocket off-balance and changing its trajectory.

As part of efforts to rectify the issue, Rocketdyne began retesting the F-1 engine in late May, injecting helium into the liquid oxygen feed lines to interrupt the resonating frequencies which had caused the unacceptable vibration levels. In four of the six tests, the ‘cure’ proved worse than the ‘disease’, by making the oscillations more pronounced. Attempts at NASA’s Marshall Space Flight Center in Huntsville, Alabama, used the same technique, but produced quite different results; no oscillations were observed. Elsewhere, the cause of the J-2 failures proved more of a mystery. During tests, engineers discovered that frost forming on propellant lines when the engines fired at ground temperatures served as an extra protection against the fuel lines rupturing. However, frosting did not take place in the vacuum of space, pointing at a possible cause of the failure. The chances of American bootprints on the Moon before the end of 1969, it seemed, was still very much touch-and-go.

THREE HUNDRED HOURS IN SPACE

Since their assignment as Gemini Vll’s prime crew on 1 July 1965, Borman and Lovell had been intensely focused on their primary objective: to spend 14 days – a total of 330 hours – in space, thereby demonstrating that astronauts could physically and psychologically withstand a maximum-length trip to the Moon. The results from the two previous long-duration flights, Gemini IV and V, had been mixed. Jim McDivitt and Ed White had returned fatigued after four days, while Cooper and Conrad had hardly enjoyed their eight days sitting in an area the size of the front seat of a Volkswagen Beetle. Sleeping in shifts of four or five hours apiece had proven impractical, Borman and Lovell learned, so they resolved to sleep and work together. Moreover, they felt that their ‘work’ time would not benefit from a rigid plan, opting instead for a broader outline which they could adapt in orbit.

Their ‘days’ would consist of two work sessions, roughly coinciding with Houston’s ‘morning’ and ‘afternoon’ time zone and fitting in well with the three flight control shifts which would monitor Gemini VII. Storage space, not just for experiments and equipment, but also for foodstuffs, was at a premium. To make the best use of this space, Kenny Kleinknecht accompanied the astronauts to McDonnell’s St Louis plant and decided that waste paper from meals could be kept behind Borman’s seat for the first week and behind Lovell’s for the second.

Suits proved another concern. Several months before, McDonnell had begun an effort to determine if ordinary Air Force flight garments – wired with medical monitoring equipment, communications headsets and oxygen bottles – could be worn as a lighter, more comfortable alternative to the bulky pressure ensembles. In fact, astronauts Gordo Cooper and Elliot See had tested such suits in June 1965 at a simulated 36,000 m in the altitude chamber, with positive results. Then, in July, McDonnell engineer James Correale suggested a lightweight suit akin to Gemini 3’s G3C garment. It would not allow astronauts to continue a mission if the cabin lost pressure, but would provide them with enough margin of safety to get to a recovery area. Of course, from an environmental-control point of view, Gemini operated more efficiently with suits off, but neither NASA nor McDonnell was keen to leave them so vulnerable.

Work on Correale’s suit was begun by the David Clark Company in August, with engineers removing as much ‘corsetry’ as possible from the 10.7 kg ensemble. Replacing its fibreglass helmet was a soft cloth hood, which utilised zips rather than a neck ring to attach it to the torso, and the entire suit could be removed easily and laid on the sides of the Gemini seats, without having to be stowed away. When complete, it weighed some 7.3 kg. It would be removed no sooner than the second day of the mission, to allow time for Gemini VII’s life-support systems to be monitored and verified as satisfactory. However, it would be worn during critical phases such as rendezvous, re-entry and splashdown. The suits were delivered in

November, only a few days before Borman and Lovell were due to launch.

Also ready was one of the largest complements of experiments – primarily medical ones – ever carried aloft. Of the 20 investigations, eight would focus on the physical and physiological responses of the two men. They ranged from calcium-balance studies to in-flight sleep analysis with a portable electroencephalogram to examining the effects of spaceflight on the chemistry of body fluids. (For the EEG, Borman would have two spots shaved on his head and dipilatory rubbed on to accommodate its sensors. Lovell was not involved in this experiment.) They had to closely monitor and keep records of their food and liquid intakes, and ‘outputs’, not only throughout their time in orbit, but also for nine days before launch and four days after splashdown. Their meals were prepared and weighed, gram by gram, by a nutritionist from the National Institutes of Health. Nine experiments were reflights from McDivitt’s and Cooper’s missions, plus three new ones: an in-flight transmitter to be aimed at a laser beacon at the White Sands Test Facility in New Mexico to evaluate optical communications, together with landmark-contrast measurements of shorelines and a study of the usefulness of stellar occultations for navigation.

Although Gemini VII would primarily serve as a passive rendezvous target, the spacecraft itself needed some last-minute modifications to support its ‘extra’ mission. In early November, acquisition and orientation lights, a radar transponder, a spiral antenna and a voltage booster were installed. Further, the decision to fly a joint mission with Gemini VI-A reduced the amount of fuel that Borman and Lovell could use for experiments and station-keeping.